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ABSTRACT
Physical transceivers exhibit distortions from hardware impairments,
of which traces remain even after compensation and calibration.
Multicell MIMO coordinated beamforming methods that ignore
these residual impairments may suffer from severely degraded per-
formance. In this work, we consider a general model for the aggre-
gate effect of the residual hardware impairments, and propose an
iterative algorithm for finding locally optimal points to a weighted
sum rate optimization problem. The importance of accounting for
the residual hardware impairments is verified by numerical simula-
tion, and a substantial gain over traditional time-division multiple
access with impairments-aware resource allocation is observed.

Index Terms— Weighted sum rate optimization, transceiver
hardware impairments, interference alignment.

1. INTRODUCTION

For wireless networks with multiple antennas at the transmitters and
receivers, spatial selectivity can be exploited to serve several users
simultaneously. Spectral efficiency can then be improved over tra-
ditional orthogonal multiple access schemes, such as time-division
multiple access (TDMA) [1]. In particular, for multicell MIMO
networks, the concept of interference alignment (IA) [2] has lately
gained traction. IA is able to completely remove the inter-user inter-
ference, by restricting the interference to a lower-dimensional sub-
space at all receivers simultaneously, and then applying zero-forcing
filters at the receivers. In terms of sum rate, it is suitable to apply IA
at high SNRs, when inter-user interference is the main performance-
limiting factor [3,4]. For practical networks, there are typically other
important performance-limiting factors as well, such as low to inter-
mediate SNR [5], uncoordinated interferers [6], imperfect channel
state information [7], and imperfect hardware [8]. In this work, we
focus on the latter and perform resource allocation and coordinated
beamforming for any SNR by finding a local optimum to a weighted
sum rate optimization problem.

Any physical wireless transceiver will have hardware impair-
ments, such as phase noise, I/Q imbalance, power amplifier non-
linearities, and sampling-rate and carrier frequency offsets [8]. For
each of these impairments, compensation schemes are typically ap-
plied to limit their negative effect. However, in practice the compen-
sation and calibration will not be perfect, and distortion noises from
residual hardware impairments will still remain [9]. These distor-
tions may have a large impact on end-to-end performance [10, 11],
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and should therefore be taken into account when performing coordi-
nated beamforming and resource allocation in practice [11].

1.1. Previous Work and Contributions

A large amount of previous work has focused on individual hardware
impairments and their respective compensation schemes; see [8] and
references therein. In [9], the aggregate effect of residual hardware
impairments after such compensation was studied, and a model for
the residual impairments was proposed and verified through mea-
surements. In [10], it was shown that the point-to-point MIMO ca-
pacity is fundamentally limited in the high-SNR regime, due to the
residual impairments. However, [10] further showed that the rela-
tive gain over SISO systems with residual impairments could still be
large. The impact of path loss and power budget for systems with
residual impairments was studied through simulations in [12]. Gen-
eralizing the model from [9], reference [11, Ch. 4.3] also described
the optimal beamforming solution for the multicell MISO downlink.

For the multicell MIMO downlink without hardware-impaired
transceivers, several iterative and distributed methods for coordi-
nated beamforming exist [3, 13, 14]. In particular, [13] stands out
as a constructive way of finding a local optimum to the non-convex
weighted sum rate optimization problem, by reformulating the prob-
lem as a weighted minimum mean squared error (MMSE) problem.

In this work, we devise an iterative method for finding a local
optimum to the weighted sum rate problem for the multicell MIMO
downlink with residual hardware impairments. This is done by ap-
plying the general residual impairments model of [11, Ch. 4.3] to the
MIMO case, and extending the weighted MMSE approach of [13] to
the problem with hardware-impaired transceivers. System perfor-
mance is evaluated through numerical simulations, and the advan-
tage of accounting for the residual hardware impairments is verified.
Further, we note a large relative gain for the proposed method, over
TDMA with hardware-impaired transceivers.

Notation: The pth row of a matrix A is [A]p,:, and the qth col-
umn is [A]:,q . The zero-mean circularly symmetric complex Gaus-
sian distribution is denoted CN (0,B) with covariance matrix B.
The Frobenius norm is k·kF and diag (·) creates a diagonal matrix.

2. MULTICELL MIMO WITH IMPAIRED TRANSCEIVERS

Our system model is a multicell MIMO downlink with hardware-
impaired transceivers. There are Kt base stations (BSs), each serv-
ing Kc user equipments (UEs). We index the kth UE associated
with the ith BS as ik. Orthogonal frequency-division multiplexing
(OFDM) is used to transform the wideband channel into a set of
orthogonal narrowband channels, or subcarriers. We study the sub-
carriers independently, and do not include the subcarrier index for
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notational simplicity. At a given subcarrier, the received signal at
UE ik is then

yik = HikiVikxik +

X

(j,l) 6=(i,k)

HikjVjlxjl +

KtX

j=1

Hikjz
(t)
j +z

(r)
ik

(1)
where Hikj 2 CMr⇥Mt is the flat fading MIMO channel1 from BS
j to UE ik. We let the signal intended for UE ik, xik ⇠ CN (0, INd),
be linearly precoded with a transmit filter Vik 2 CMt⇥Nd . The
received signal in (1) contains the desired signal, inter- and intra-cell
interference, and transceiver distortion noises. The terms z

(t)
j and

z
(r)
ik

in (1) model the distortion noises from the residual hardware
impairments after compensation and calibration at the transmitter
and receiver, respectively. The receiver thermal noise is part of z(r)ik

.
For the distortion noises, we use the model from [11, Ch. 4.3].

That is, z(t)i ⇠ CN (0,C
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The transmitter distortion is modeled as Gaussian, since it is the sum
of many residual impairments. Even if the antennas are served by
different RF-chains, the distortions at the different antennas may be
correlated due to the precoding [15]. Such correlations are, how-
ever, typically small [15], and we approximate them with zero for
tractability. Due to its nature, being the residual of impairments after
compensation and calibration for a given transmitted signal, we as-
sume the transmit distortion noise to be independent of the transmit-
ted signal. The power of the distortion noise at antenna m, c(t),2i,m , is
however a function of the signal power allocated to that antenna [9].

Following [11, Ch. 4.3] we let c(t)i,m = ⌘
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where the ⌘(·) is a convex, nonnegative, and nondecreasing function
describing how the magnitude of the signal maps to the magnitude
of the transmitter distortions.

For the receiver distortion noise, the model in [11, Ch. 4.3]
only considered single-antenna receivers. In order to support the
MIMO case, we extend the model accordingly. Hence we assume
that z(r)ik
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Similarly as above, we assume the distortions to be uncorrelated
over antennas, and independent of the received signal. The dis-

tortion power is c
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where ⌫(·) is a convex, nonnegative, and nondecreasing function
describing how the magnitude of the received signal maps to the
magnitude of the receiver distortions. �2

r is the thermal noise power.
The impact of transceiver impairments is typically measured us-

ing the error vector magnitude (EVM). For our hardware impair-
ments model, the EVM at transmitter antenna m is
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1The system model can easily be extended to different number of antennas
per transceiver, different number of data streams per user, etc.

The EVM at the receiver side antennas is similarly defined, with
respect to the received power at that antenna. Depending on the
required spectral efficiency, a typical maximum transmit-EVM range
in the 3GPP LTE standard is [0.08, 0.175] according to [16].

3. WEIGHTED SUM RATE OPTIMIZATION

Focusing on the effect of hardware impairments, we assume perfect
channel state information at all nodes. Given the system model in
(1), and assuming that the interference and distortions are treated as
noise in the decoder, the achievable data rate for user ik is

Rik = log det

✓
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H
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where Qint+dist
ik = Qik �HikiVikV

H
ikH

H
iki is the covariance matrix

of interference and distortions for user ik. The total received signal
covariance matrix Qik is given in (3), at the top of the page.

Our goal is then to maximize the weighted sum rate RWSR =P
(i,k) ↵ikRik of the system. The nonnegative data rate weights

↵ik determine the relative priorities of the users in the system level
criterion, and are assumed to be given. Under a per-BS power con-
straint, the impaired weighted sum rate problem to be solved is

maximize
{Vik

}
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This is a non-convex problem, since (2) is non-convex in {Vik}.
Therefore, we only endeavour to find a locally optimal point. In
order to do that, we first introduce the mean squared error (MSE)
matrix for user ik,
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✓⇣

xik �UH
ikyik

⌘⇣
xik �UH

ikyik

⌘H◆

= I�UH
ikHikiVik �VH

ikH
H
ikiUik +UH

ikQikUik

where Uik 2 CMr⇥Nd is a linear receive filter. Inspired by [13], we
introduce the MSE weight matrices Wik 2 CNd⇥Nd and formulate
an impaired weighted MMSE problem:

minimize
{Uik

}
{Wik

}
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(ImpWMMSE)

Proposition 1. The optimization problems in (ImpWSR) and
(ImpWMMSE) have the same global solutions {V?

ik}.

Proof. Similarly as in the proof of Theorem 1 in [13], this follows
by substituting the optimality conditions for {Uik} and {Wik} (de-
rived in Sec. 3.1) into (ImpWMMSE). The remaining optimization
problem (w.r.t. {Vik}) can then be identified as (ImpWSR).
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3.1. Alternating Minimization

The problem in (ImpWMMSE) is non-convex, but we can apply al-
ternating minimization [17] to it over the three blocks of variables.
First, by fixing {Wik ,Vik} and optimizing over {Uik}, the prob-
lem decouples over the users and we get U?

ik = Q�1
ik

HikiVik . This
is the well-known MMSE receiver.

Similarly, fixing {Uik ,Vik}, the problem again decouples over
the users and the optimal MSE weights are
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the matrix inversion lemma. Notice that log det
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hence the weight W?
ik describes what data rate user ik can achieve

under the current interference and distortion conditions.
Finally, we fix {Uik ,Wik} and optimize over {Vik}. By

dropping terms only containing Wik and rearranging the remaining
terms using properties of the trace, the problem that should be solved
is displayed in (ImpWMMSE-BS), at the top of the page. The matrix
Ti =

P
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H
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i and C
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are convex [18, Ch. 3.2], the problem is convex and can be solved
by, for example, general-purpose interior-point methods [19]. When
the optimal {V?

ik} have been found, a new alternating minimization
iteration is started by again optimizing over the {Uik}, given the
new {Vik}. These iterations then continue until convergence.

Proposition 2. The alternating minimization (AM) of (ImpWMMSE)
monotonically converges and every limit point of the AM iterates is
a stationary point of (ImpWSR).

Proof. The AM objective values are monotonically nonincreasing,
and the objective function can be lower-bounded. If any of the
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to get the squared functions on epigraph form. For this equivalent
problem, the objective function is continuously differentiable and
the extended feasible set is convex. Then, since the subproblem for
{Uik} is strictly convex, [17, Prop. 5] gives that every limit point of
the AM iterates is a stationary point of (ImpWMMSE). That this is
also a stationary point of (ImpWSR) follows directly from the proof
of Theorem 3 in [13].

The alternating minimization is distributed over the UEs,
but (ImpWMMSE-BS) only decouples over the BSs if the term
P
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H
ikC
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⌘
decomposes over the BSs. In the

next section we investigate one such particular case.

3.2. Distributed Solution for Constant-EVM Impairments

We now exemplify how a distributed, semi-closed form, pre-
coder solution can be achieved under a certain impairment model:
constant-EVM impairments. In particular, we let ⌘(x) = tx and
⌫(x) = rx; thus, we have that EVM(t)

m = t and EVM(r)
n =

r for all users, all receive antennas n, and all transmit anten-
nas m. Consequently, C
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problem decomposes into one subproblem per BS. With eTi =P
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4. PERFORMANCE EVALUATION

We investigate the performance of the proposed method by means
of numerical simulation. For this purpose, we let the impairment
functions be

⌘(x) = tx

 
1 +

✓
x



(NL)
t

◆2
!
, ⌫(x) = rx, (4)

which means that the receivers have a constant EVM of r and the
transmitters have a third order non-linearity due to the power ampli-
fier. For low transmit powers, the EVM at the transmitters is t and,
due to the non-linearity, it doubles at a transmit power of (NL),2

t . No-
tice that for this choice of impairment functions, c(t),2i,m and c

(r),2
ik,m

are
differentiable w.r.t. {Vik}. When needed, in order to solve to solve
(ImpWMMSE-BS), we use the modeling framework Yalmip [19]
with the Gurobi solver [20]. In the spirit of reproducible research,
the entire simulation source code is available for download at [21].

We employ a Kt = 3 simulation scenario where each BS has
Mt = 4 antennas and each UE has Mr = 2 antennas. The BSs
are placed 500 m apart, at the corners of an equilateral triangle. The
triangle is divided into three cells, each containing Kc = 2 uni-
formly dropped users that are served by the closest BS. For a dis-
tance d (in meters) between BS and UE, the path loss is described
by PLdB = 15.3 + 37.6 log10(d). The UEs are never closer than 35

m to the BS. We assume all users to be indoors with a penetration
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Fig. 1. Sum rate evolution (one realization) for Pt = 18.2 dBm,
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(NL)
t ) = 15.2 dBm.

loss of 20 dB. The BS antenna array boresights are aimed towards
the center of the triangle, and the BS antenna gain is 12

�
✓

35�
�2 dB

where ✓ is the angle from the boresight. The MS antenna gain is
0 dB. The small scale fading is given by i.i.d. CN (0, 1) entries for
all antenna-pairs. We study one 15 kHz subcarrier with correspond-
ing noise power �2

r = �127 dBm, and interpret (2) as a spectral
efficiency. The user priorities are ↵ik = 1 for all ik.

For the WMMSE method of Sec. 3.1, we compare the case of
impairments-aware BSs and UEs, with the case of impairments-
aware UEs and impairments-ignoring BSs, and with the case of both
ignorant UEs and BSs. The case of having aware UEs but ignorant
BSs could occur if the UEs estimate their covariances Qik over the
air, without having a specific model for the impairments. The impact
of the distortions is then picked up by the UEs, and that knowledge
is implicitly distributed to the BSs in the WMMSE iterations. The
ignorant BSs let C(t)

i = 0 and C
(r)
ik

= 0 in their optimization.
As a baseline, we apply the popular MaxSINR method [3].

This ad-hoc method iteratively maximizes the SINRs of all the data
streams in the network, and although it has not been proven to con-
verge, it often performs excellently in numerical studies without
impairments [4, 5, 14]. We modify the method slightly, to account
for hardware impairments. In particular, we let Wik = I for all ik,
and optimize the pth column of the precoder for UE ik w.r.t. the
virtual uplink interference, distortions and noise covariance matrix

TMaxSINR
ik,p =

P
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As another baseline, we use TDMA. For impairments-aware UEs
and BSs, we use the WMMSE method to find the precoders. For
ignorant UEs and BSs, we use eigenbeamforming with water filling.

First, we study the convergence behaviour of the proposed meth-
ods and the baselines. We let Nd = 2 for WMMSE and Nd = 1 for
MaxSINR. The power constraint per BS is Pt = 18.2 dBm and the
impairments parameters are t = r =

10
100 and 20 log10(

(NL)
t ) =

15.2 dBm. We generated one user drop, and the corresponding sum
rate evolution is shown in Fig. 1. The proposed method converges,
and it is clearly important to take hardware impairments into account
in order to achieve good performance.

Next, we vary the hardware impairments parameters in (4) for
Pt = 18.2 dBm. We generated 100 user drops, and 10 small-scale
fading realizations per drop. The iterative methods were run until
the relative change in achieved sum rate was less than 10

�3. The
results in Fig. 2, averaged over the Monte Carlo realizations, show
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that the impairments-ignoring schemes are heavily affected by the
non-linearity, but the impairments-aware performance is kept steady.

With the same setup, we study performance as a function of
transmit power. We specialize to ⌘(x) = tx and vary t = r

and the transmit power Pt. The results in Fig. 3 demonstrate
that impairments-aware WMMSE outperforms the other methods,
but WMMSE with ignorant BSs and aware UEs performs almost
equally well. Impairments-ignoring WMMSE performs worse for
larger transmit powers, due to the fact that it maximizes an incorrect
objective. Both WMMSE and MaxSINR performs around 3 times
better than TDMA, and impairments-ignoring TDMA has very sim-
ilar performance to impairments-aware TDMA. Further, it can be
seen that the achieved high-SNR slopes are zero for all schemes, as
predicted by theory [10].

5. CONCLUSIONS

The concept of interference alignment has by many been seen as
a saviour, due to its ability to achieve the maximum high-SNR
scaling of the sum rate in multicell MIMO networks. However,
due to the residual hardware impairments, the high-SNR scaling
eventually becomes zero, for both coordinated beamforming and
traditional TDMA. As shown in this work, applying impairments-
aware resource allocation techniques inspired by IA still outperforms
impairments-aware TDMA with a large margin.
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