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ABSTRACT

An effective way to understand the behavior of a sound field is to
visualize it. An optical measurement method is a suitable option
for this as it enables contactless non-destructive measurement. After
measuring a sound field, interpolation of the data is necessary for a
smooth visualization. However, conventional interpolation methods
cannot provide a physically meaningful result especially when the
condition of the measurement causes moiré effect. In this paper, a
special interpolation method for an optically visualized sound field
based on the Kirchhoff-Helmholtz integral equation is proposed.

Index Terms— Sound field visualization, partial differential
equation (PDE), laser Doppler vibrometer (LDV), Schlieren imag-
ing.

1. INTRODUCTION

Understanding the behavior of a sound field is one of the most im-
portant tasks for many acousticians. Microphones are usually used
for such observation; however, the presence of measuring instru-
ments inside the sound field prevents accurate measurement because
a sound field depends on the spatial setting of the field. As an alterna-
tive, optical observation for audible sound field have been developed
recently including Schlieren imaging [1, 2] and Optophone [3, 4].
Our research group is developing the laser measurement method us-
ing a laser Doppler vibrometer (LDV) [5, 6]. These methods enable
a contactless non-destructive measurement of sound field by detect-
ing fluctuations on optical quantity caused by the sound field such as
diffraction and Doppler shift. Common characteristic among these
optical methods is that the measured data represent physical quan-
tity of a sound field integrated along a beam of measuring light. Al-
though some applications may require three-dimensional informa-
tion which leads to collaboration with computed tomography (CT)
[5, 7, 8, 9, 10], two-dimensional visualization of the sound field is
still a highly effective tool for its qualitative evaluation. This paper
focuses on a visualized two-dimensional sound field projected by the
optical methods.

When a measured sound field is displayed on a screen, post-
processing of the measured data, typified by interpolation, is nec-
essary since it is difficult to measure thousands or even millions
of points for smooth appearance depicted on a several kilo- or
mega-pixel display. Conventionally, polynomial interpolation, an
extremely popular method in image processing which fits a polyno-
mial function to data, is applied to optically visualized sound fields
for a smoother presentation. However, polynomial interpolation
cannot always provide a good approximation of an actual sound
field especially when the condition causes a moiré effect.

In this paper, a special interpolation method for an optically
visualized sound field based on the Kirchhoff-Helmholtz integral
equation is proposed. Experiments confirm its effectiveness and ro-
bustness against noise.

2. OPTICAL PROJECTION OF SOUND FIELD

When a sound field is projected by a light beam, physical quantity of
the sound field, which in most cases is sound pressure variation, is
integrated along the beam [11]. Let us consider a general model of
optical measurement of a sound field governed by the homogeneous
Helmholtz equation as in Fig. 1. There are rigid parallel planes at z=
0 and z = d which reflect sounds completely. (The actual meaning
of these planes varies depending on which measurement method is
applied). Once a light beam is emitted from the plane at z = 0
perpendicularly, the sound field is integrated through z=[0, d] as

∫ d

0

(∇2 + k2)p(r) dz = 0 (1)

where p is sound pressure, k is the wave number, r ∈ R3 is a position
and ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 denotes the three-dimensional
Laplacian operator. Using the Leibniz integral rule,

(
∂2

∂x2
+

∂2

∂y2
+k2

)∫ d

0

p(r) dz = −α

∫ d

0

∂vz(r)
∂z

dz, (2)

and this can be rearranged as

(
∇2

2D + k2)
∫ d

0

p(r) dz = −α [vz(r)]
z=d
z=0 (3)

where vz(r) = 1/iωρ0 · ∂p(r)/∂z is the z-way (which is also
the normal direction to the planes) particle velocity, α = iωρ0 and
∇2

2D = ∂2/∂x2 + ∂2/∂y2. As we assumed complete reflection on
the boundaries, the right-hand side of Eq. (3) becomes zero, and we
obtain (

∇2
2D + k2) pproj = 0 (4)

with pproj =
∫ d

0
p(r)dz. This result indicates that a projected sound

field, originally governed by the three-dimensional Helmholtz equa-
tion, is dominated by the two-dimensional Helmholtz equation.
Therefore, it is reasonable to apply the two-dimensional Kirchhoff-
Helmholtz equation to an optically projected sound field. In the rest
of this paper, p denotes the projected sound pressure pproj and r∈ R2

denotes a position in the interior of a two-dimensional region Ω.

3. INTERPOLATION METHOD FOR OPTICALLY
PROJECTED SOUND FIELD

The Kirchhoff-Helmholtz integral equation

p(r) =

∫

∂Ω

[
G(r, rb)

∂p(rb)
∂n

− ∂G(r, rb)
∂n

p(rb)
]
drb (5)

is the boundary integral form of the Helmholtz equation where r ∈
Ω, rb ∈ ∂Ω, G is the fundamental solution of the Helmholtz equa-
tion and ∂/∂n denotes the outward-directed normal derivative at the
boundary. This equation implies that the sound pressure at any points
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Fig. 1. Geometry of a general model of optical measurement of a
sound field considered in Section 2.

in the interior of a region Ω can be calculated from the boundary con-
dition since the fundamental solution G and its normal derivative are
known from positions r and rb as

G(r, rb) =
j
4
H(1)

0 (k|r− rb|) (6)

∂G(r, rb)
∂n

=
jk
4
H(1)

1 (k|r− rb|)
(r− rb) · n
|r− rb|

(7)

in the two-dimensional case where n is a unit normal vector at rb
and H(1)

0 denotes the Hankel function of the first kind of order zero.
Therefore, using the Kirchhoff-Helmholtz integral equation, an in-
terpolation problem of an optically projected sound field is reduced
to the estimation problem of the boundary condition of an arbitrarily
selected boundary surrounding the measured region.

With appropriate discretization, as in boundary element method,
Eq. (5) can be expressed as a simultaneous linear equation

p = Gpb (8)

where G is a matrix of G and ∂G/∂n, p is a vector containing
interior sound pressure p(r) and p　

b is the boundary condition to be
estimated. This problem, however, cannot be solved simply because
the condition number of G exceeds 1015. In order to solve this ill-
posed problem, partial differential equation (PDE), the Helmholtz
equation in this case, is utilized as an equality constraint on a least
squares formulation. As a result, the problem to be solved becomes

min
pb

∥Gpb− p ∥2 s.t. (∇2+ k2) p = 0 (9)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 and ∥ · ∥ denotes Euclidean norm.

3.1. Discretization of Kirchhoff-Helmholtz integral equation

One easy way to discretize Eq. (5) is combining

p(ri) = gT
i p

　

b (10)

into a matrix equation Eq. (8) where

p = [ p(r1) p(r2) · · · p(rN)]T ,

G = [g1 g2 · · · gN ]T d ,

g　
i = [G(ri,rb1) · · ·G(ri,rbM) −G′(ri,rb1) · · ·−G′(ri,rbM)]T ,

p　b= [ p′(rb1) p′(rb2) · · · p
′(rbM) p(rb1) p(rb2) · · · p(rbM) ]T ,

(11)
f ′denotes ∂f/∂n, N ∈ N\{0} is the number of the measured points
and M ∈ N\{0} is the number of the arbitrarily selected points on
a boundary for the discretization. However, this formulation can-
not handle the Laplacian in Eq. (9) since it considers the boundary
condition with points only at the boundary; values of discretization
points only at the boundary cannot provide its gradient and diver-
gence without knowing the underlying formula.
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Fig. 2. Discrete points of the boundary condition pb± in Section 3.2.
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Fig. 3. Arrangement of discrete points around a corner in Eq. (14).

In order to approximate second-order derivatives from sampled
values, at least three points are required in the direction of the deriva-
tive. Thus, points near the boundary rb+ and rb−, which are located
outside and inside the region in normal-direction respectively, are
incorporated into the boundary condition p　

b. Figure 2 shows an ex-
ample of the points at the boundary discretized with the midpoint
rule and its neighborhoods. In this paper, a square-shaped boundary
is chosen for a simpler notation of finite difference approximation of
its tangent and normal derivatives.

3.2. Matrix formulation with finite difference approximation

Finite difference approximation of the homogeneous Helmholtz
equation (∇2+ k2) p = 0 can be written as

[ 1
h2 I (−2

h2 I+B+k2I ) 1
h2 I ]p　

b± =: Hp　

b±= 0 (12)

where h=∥ rbm+− rbm∥=∥ rbm− rbm−∥, I is the M-dimensional
identity matrix, p　

b± is a vector of sound pressure at rb+, rb and rb−

p　
b±=[ p(rb1+)· · · p(rbM+

) p(rb1)· · · p(rbM) p(rb1−)· · · p(rbM−) ]
T,

and B is the band matrix approximating second-order derivatives as

p(2)(rbm) =
p(rbm+1)− 2 p(rbm) + p(rbm−1)

d2
(13)

where d = ∥ rbm+1− rbm∥ = ∥ rbm− rbm−1∥ and f (l) denotes
l-th order tangent derivatives. This band matrix is modified in order
to handle corners of the box-shaped boundary properly by adding
corner points p(rc) which are only used for the constraint, not for
the integration in Eq. (5), and using four-points difference

p(2)(rbm) =
16p(rcm)− 25p(rbm) + 10p(rbm+1)− p(rbm+2)

5d2
(14)

where ∥ rbm− rcm∥ = d/2 as in Fig. 3. The error term of this four
points formula is 1

24d
2p(4)(rbm) + O(d3) which is the same order

of the three points formula in Eq. (13) : 1
12d

2p(4)(rbm) +O(d3).
Similarly, the normal derivative of sound pressure at the bound-

ary p′(rbm) in Eq. (11) can be approximated by finite difference

p′(rbm) =
p(rbm+)− p(rbm−)

2h

which describes the relation between p　
b and p　

b± as

p　
b =

[
1
2hI 0 −1

2h I
0 I 0

]
p　
b± =: Dp　

b±. (15)
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Therefore, including everything above, Eq. (9) finally becomes

min
pb±

∥GDp　

b±− p ∥2 s.t. Hp　

b±= 0. (16)

Although this kind of equality constrained quadratic programming
problem can be solved directly, a direct approach is not suitable for
Eq. (16) because the equality constraint equation is not exact but
approximated which leads to instability of the solution. Hence, the
constraint is integrated as a penalty term with Tikhonov regularizer

min
pb±

∥GDp　

b±− p ∥2 + α ∥Hp　

b±∥
2 + β ∥p　

b±∥2 (17)

where α and β are regularization parameters. The procedure of the
proposed method is as follows:

1. Import measured data p and calculate G as in Eq. (11) from
Eq. (6) and Eq. (7).

2. Create H and D illustrated in Eq. (12) and Eq. (15).

3. Solve Eq. (17) to estimate the boundary condition p　
b±.

4. Calculate any points inside the region from the estimated
boundary condition using Eq. (5).

4. EXPERIMENTS
4.1. Numerical simulation
A numerical simulation was conducted to confirm effectiveness of
the proposed method. The simulation condition is listed in Table 1.
A projected sound field was sampled by 16×16 sampling points,
and a box-shaped boundary was set around the sampling points as in
Fig. 4. A point sound source was located at the lower left, and the
sound field was reconstructed by interpolating the sampled points.

Figure 5 shows an example of a reconstructed sound field com-
pared with ordinary polynomial interpolation methods: bilinear and
third-order spline interpolation. Gaussian noise was added to the
sound field generated by a 1500 Hz point sound source, and the
noisy mixture was sampled as test data. Even though the sampling
interval is shorter than the Nyquist interval, a moiré effect was ob-
served on the results of polynomial interpolation methods, illustrated
in Fig. 5(d) and 5(e). On the other hand, it can be confirmed that the
proposed method clearly reconstructed the original field.

For the quantitative assessment, signal-to-noise ratio (SNR) of
interpolated sound fields,

SNRresult= 10 log10

∑
x,y |p |

2

∑
x,y |p− p̂ |2 (18)

where p is the sound pressure of the original sound field and p̂ de-
notes the interpolated sound field, were calculated for several sam-
pled fields with additional noise whose SNR,

SNRsample= 10 log10

∑
x,y |p |

2

∑
x,y |w|2 (19)

where w denotes noise, set up arbitrarily by adjusting the level of
Gaussian noise. Figure 6 shows SNR of the interpolated sound fields
versus SNR of the sampled fields. SNRsample was calculated from
16×16 = 256 sampling points whereas SNRresultwas calculated
from 301×301 = 90601 interpolated points. The peak signal-to-
noise ratio, PSNR = 10 log10{ 90601 p2max/

∑
x,y| p− p̂ |2 }, was

also illustrated in the same figure where pmax denotes the maximum
possible value of the sound pressure inside the sampled region after
normalization. For all of the data, the regularization parameters in
Eq. (17) were fixed to α = 1 and β = 0.1.

Table 1. Simulation condition.
Sampling points 16×16 (= 256) points

Sound source position (-1,-1)
Length of boundary elements d 6.25 mm

Small distance h 0.1221 mm
Sampling points interval 0.1 m

Sound speed 340 m/s
Spatial Nyquist frequency 1700 Hz
Sound source frequency 1000, 1500, 2000, 4000 Hz

−0.5 0 0.5 1−1

−0.5

0

0.5

1

x [m]
y 

[m
]

point sound source

Fig. 4. Setting of the sampling points and the boundary for the nu-
merical simulation in Section 4.1.

(a) Original sound field (b) Noisy sound field (c) Sampled noisy field

(d) Bilinear (e) 3rd-order spline (f) Proposed method

Fig. 5. A visual example of the simulation for 1500 Hz in Section
4.1. Normalized sound pressure is depicted as white for 1 and black
for −1: (a) original sound field, (b) noisy sound field composed by
adding (a) and Gaussian noise whose SNR was 20 dB, (c) sampled
noisy sound field, (d) interpolation results by bilinear interpolation,
(e) third-order spline interpolation and (f) the proposed method.

From the results, it can be confirmed that the proposed method
clearly outperforms bilinear and third-order spline interpolation for
every frequencies. SNRresult of the proposed method depicted in
Fig. 5(f) is 25.22 dB, which is an example showing that it is difficult
to find a difference between the original and the interpolated sound
field visually when its SNRresult is higher than around 20 or 25 dB.
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Fig. 6. SNRresult and PSNR of interpolated sound fields by bilin-
ear interpolation, third-order spline interpolation and the proposed
method in Section 4.1.

(a) Sampled sound field (b) 3rd-order spline (c) Proposed method

Fig. 7. A visual example of the simulation for a sound field produced
by a 4000 Hz point sound source located as in Fig. 4.

Table 2. Measurement condition.
Place for measurement Reverberation room

@Waseda Univ. Honjo campus
Loud speaker YAMAHA MSP5 STUDIO

Scanning LDV Polytec PSV-300
Measured points 25×25 (= 625) points

Sound source frequency 2000 Hz

For the sound field whose frequency is under the spatial Nyquist
frequency, 1700 Hz in this case, it can be reconstructed accurately
especially when the data are less contaminated. On the contrary, the
sound field exceeding the Nyquist frequency cannot be reconstructed
from the data sampled by equal interval sampling points. However,
the proposed method can still correctly sketch the image of the sound
field exceeding the Nyquist frequency as shown in Fig. 7.

4.2. Application to real data
The proposed method is applied to real data recorded by a LDV.
The measurement condition and setup are illustrated in Table 2 and
Fig. 8. A Laser beam was emitted from the LDV to a light reflector
stuck on the thick rigid cement wall of the huge (12 m × 20 m × 6.5
m) reverberation room. A stationary sound field driven by a 2000 Hz
sinusoidal wave was recorded by 25×25 = 625 sampling points.

The results are shown in Fig. 9. The measured data were thinned
out one-by-one and two-by-two in order to confirm properness of the
proposed method. As the data reduced, third-order spline interpola-
tion lost reproducibility of the measured sound field. In addition,
spline interpolation was easily affected by measurement noise. In
contrast, the proposed method can reproduce highly similar interpo-

1.105 m

4 m

2 m

1 m

Speaker

LDV

rigid wall
with reflector

Fig. 8. Setup of the experiment described in Section 4.2.

(a) Measured sound field (b) 3rd-order spline (c) Proposed method

Fig. 9. An actual sound field measured by the LDV in Section 4.2.
The top left figure illustrates the full 25×25 measured data and its
interpolation results are illustrated on the top row. The middle row
represents the results for reduced 13×13 data created by skipping
the full data one-by-one. The lowest row is the results for reduced
9×9 data created by skipping the full data two-by-two.

lated fields from the reduced data without influence of noise. This
result shows that almost 90 % of the measuring points can be reduced
to achieve a similar result in this situation.

5. CONCLUSIONS

In this paper, a novel interpolation method for an optically measured
sound field was proposed. The proposed method effectively utilizes
the fact that the measured data represent a sound field by formulating
the least squares method of the Kirchhoff-Helmholtz integral equa-
tion with a penalty term of the Helmholtz equation, while the con-
ventional polynomial interpolation does not consider the behavior of
data.The numerical simulation confirmed that the proposed method
clearly outperformed the conventional methods especially when the
noise level of the data was low. The effectiveness of the proposed
method was also confirmed by the real data.

Future work will include improvement on the formulation of
the optimization problem to handle the constraint of the Helmholtz
equation more effectively. Furthermore, three-dimensional recon-
struction of a sound field from optically projected two-dimensional
data will be considered.
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