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ABSTRACT

We show corroborating evidence that, among a set of
common acoustic parameters, the clarity index C50 provides
a measure of reverberation that is well correlated with speech
recognition accuracy. We also present a data driven method
for non-intrusive C50 parameter estimation from a single
channel speech signal. The method extracts a number of
features from the speech signal and uses a binary regression
tree, trained on appropriate training data, to estimate the C50.
Evaluation is carried out using speech utterances convolved
with real and simulated room impulse responses, and addi-
tive babble noise. The new method outperforms a baseline
approach in our evaluation.

Index Terms— C50 estimation, speech recognition.

1. INTRODUCTION

Sound propagation in enclosed spaces may follow multiple
paths from the source to the receiver due to reflections from
surfaces in the room, in addition to direct path propagation.
These reflections create a reverberant sound which varies
with the acoustic characteristics of the room and positions of
source and receiver. Whereas the reverberation time (T60) is
widely used to characterize the acoustic properties of a room,
this measure is independent of the source-receiver distance.
Since the level of reverberation in a signal is sensitive to
the source and sensor positions as well as the room charac-
teristics, it is often desirable to estimate measures that take
account of these factors. Two such measures are clarity index
(C50) and direct-to-reverberation ratio (DRR)) [1].
Room acoustic properties can be determined from the Room
Impulse Response (RIR). However, in many real situations
the RIR is unavailable so any acoustic parameters must be
estimated non-intrusively from the reverberant signal.
Room acoustic parameters can be used to estimate the per-
ceived quality [2] or intelligibility [3] of reverberant record-
ings, and also to predict speech recognition performance
[4] [5] [6]. Furthermore, a wide range of de-reverberation
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algorithms employ room acoustic parameter information to
suppress reverberation [1] [6] [7] [8] [9]. Hence, the mea-
surements related to room acoustics have a key role in many
situations and therefore it is of strong importance to find an
accurate method to estimate these parameters from speech
signals.
A baseline method for clarity index is [10]. The authors
propose two methods to estimate different room acoustic pa-
rameters from speech and music signals. The first one uses
an artificial neural network with 40 features extracted by
sampling the power spectrum density (PSD) estimation of the
sum of the Hilbert envelopes computed for certain frequency
bands. The second method finds the cleanest sections of free
decays in the signal to estimate with ML approach the decay
curve and average this estimation to obtain the final estimator.
We have chosen the first approach as the baseline method due
to its higher performance for speech signals [10]. Its original
form measures C80 but it has been modified in the current
paper to measure C50 in order to be compatible with our
evaluation. Falk and Chan [11] proposed a method to com-
pute DRR in the modulation domain. The algorithm is based
on the observation that low modulation frequency energy
(below 20Hz) is barely affected by the reverberation level
whilst high modulation frequency energy increases with the
reverberation level. The overall ratio can be linearly mapped
to estimate DRR parameter. Additionally, a similar idea is
applied to estimate T60. Many more methods are available
for T60 estimation including [12] based on the decay rate
from a statistical model of the sound decay or [13] based on
spectral decay distributions.
In this paper we propose a Non-Intrusive Room Acoustic
(NIRA) estimation method to estimate the room acoustic
parameters based on a Classification And Regression Tree
(CART) which is created with a set of features computed
from the reverberant signals. The paper is organised as fol-
lows: Section 2 presents the motivation of this work. In
Section 3 the method proposed to estimate room acoustic pa-
rameters is presented. The evaluation database and the results
obtained are detailed in Section 4 and 5 respectively. Finally,
in Section 6 the conclusions are drawn.
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2. ROOM ACOUSTIC PARAMETERS

In this section we provide evidence to support the usefulness
of C50 estimation by showing that C50 is the best correlated to
phoneme recognition performance of a set of common acous-
tic parameters. A number of parameters have been presented
in the literature to characterize the effect of reverberation [1].
We measure the recognition performance using phoneme ac-
curacy rate (Aph) to avoid the influence of language model or
dictionary rules in the results and thus characterize the acous-
tic distortions more specifically. The Aph is defined as

Aph =
N −D − I − S

N
=
H − I
N

, (1)

where N represents the total number of phones recognized,
H is the number of correctly recognized phones, D is the
number of deletions, S is the number of substitutions and I
the number of insertions.

2.1. Phone recognition configuration

A standard phone recognizer was implemented using HTK
[14]. The TIMIT database [15] was used to train the mod-
els following the phone folding proposed in [16] and exclud-
ing the 2 dialect sentences (SA). The testing database con-
tains 168 TIMIT sentences equally distributed per dialect con-
volved with 140 RIRs simulated with the image method [17].

2.2. Room acoustic parameters evaluation

The acoustic parameters evaluated in this experiment are T60,
DRR, center time (Ts) [3], Dτ computed as [1]

Dτ = 10 log10

(∑Nτ

n=0 h
2(n)∑∞

n=0 h
2(n)

)
dB, (2)

and Cτ defined as

Cτ = 10 log10

( ∑Nτ

n=0 h
2(n)∑∞

n=Nτ+1 h
2(n)

)
dB, (3)

where τ represents a variable ranging from 0.1 ms to 1 s, Nτ
is an integer number of samples corresponding to τ seconds
and h(n) is the RIR.

2.3. Results

Table 1 shows the absolute Pearson correlation coefficients
obtained for each measurement. As expected from reference
[6], it can be seen that T60 is not well correlated with Aph.
One reason for this behaviour is the independence of this
measure with the source-receiver distance which is a key fac-
tor in the degradation of the clean speech. Figure 1 plots the
correlation of Dτ with 10−1 ms ≤ τ ≤ 103 ms. The corre-
lation of this parameter tends to decrease when τ increases.

At τ = 50 ms, this is D50, the correlation coefficient is low.
Figure 1 also shows the correlation of Aph with Cτ , where
it can be seen that the maximum correlation is in the range
50 ms≤ τ ≤100 ms. The correlation coefficient for C50 is
the highest for the set evaluated. These results are consistent
with [6]. Results are also given for the correlation of each of
the parameters with the speech quality score PESQ [18].
We can conclude that C50 is the most strongly correlated
acoustic parameter in our tests (0.80 and 0.96 correlation
with Aph and PESQ respectively) and therefore, in the fol-
lowing, we propose a method to estimate C50.

T60 DRR Ts D50 C50

Aph 0.6449 0.6937 0.7868 0.642 0.8044
PESQ 0.6997 0.8352 0.9549 0.715 0.9571

Table 1. Correlation comparison of Aph and PESQ with dif-
ferent acoustic parameters.
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Fig. 1. Chart of Aph and PESQ correlation coefficients ob-
tained with Cτ and Dτ for τ between 0.1 ms and 1 s.

3. NIRA METHOD

3.1. Feature extraction

It begins with a short time segmentation of the signal into 20
ms non-overlapping frames using a Hanning window. Short-
term features (φ1:73 in Table 2) are extracted per active speech
frame. The mean (µ), variance (σ2), skewness (s) and kurto-
sis (k) of φ1:73 are computed per utterance and appended to
the long-term features (φ74:90 in Table 2).
We include a novel feature in this vector based on the Hilbert
phase computed as

θH(t) = tan−1(si(t)/sr(t)), (4)

where sr(t) represents the signal to be analysed and si(t) its
Hilbert transform defined as

si(t) = H(sr(t)) =
1

πt

∫ +∞

−∞

sr(τ)

t− τ
dτ. (5)
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Description Feature Rate of change
of feature

Line Spectrum Frequency (LSF) computed from 10 first Linear Prediction Coding coefficients φ1:10 φ11:20
Zero crossing rate, Speech variance, Pitch period and iSNR φ21:24 φ25:28

Variance and dynamic range of Hilbert envelope φ29:30 φ31:32
Spectral flatness and spectral centroid of the Power Spectrum of long term Deviation (PLD) φ33:34 φ35:36

Spectral dynamics of the Power Spectrum of long term Deviation (PLD) φ37 -
12th order Mel-Frequency Cepstral Coefficients with delta and delta-delta φ38:73 -

16 frequency bins of the Long Term Average Speech Spectrum (LTASS) deviation φ74:89 -
Unwrapped Hilbert phase φ90 -

Table 2. NIRA features: φ1:73 are short-term features computed by frame, whose statistics are used in the CART, and φ74:90
are long-term features calculated over the entire utterance.

This parameter was shown to be a key factor for sound local-
ization [19]. It is know that reverberant environments have
the effect of diffusing the sound source [20], hence Hilbert
phase can provide useful and relevant information indicative
of the reverberation level. Figure 2 shows the behaviour of
the unwrapped Hilbert phase for three different reverberant
conditions applied to the same speech file. The slope of this
phase increases with the reverberation level and thus it can be
used for estimating this room acoustic parameter.
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Fig. 2. Unwrapped Hilbert phase and linear regressions.

3.2. CART classifier

A CART regression tree [21] is used to model the 309 element
feature vectors. The CART was trained with the database de-
scribed in Section 4.1 to output the C50 estimate as a contin-
uous variable. The advantage of using the CART approach is
its fast output prediction and its human readable structure.

4. PERFORMANCE EVALUATION

Here we present the database and evaluation metrics used to
compare NIRA with the method of [10], which is based on

statistical machine learning using envelope spectrum features
and serves the role as a baseline approach from the state-of-
the-art, against which our method can be evaluated.

4.1. Database

The database was created to evaluate the C50 estimators com-
prising a training set used to build the different models; and
an independent testing set.
The training set of reverberant speech is created with 32 clean
recordings extracted from training partition of TIMIT [15].
The clean speech is convolved with 140 RIRs generated with
the image method [17]. Figure 3 displays the distribution of
the RIRs according to their C50. Babble noise is added at
different SNRs from 0 dB to 30 dB in steps of 5 dB as well as
SNR =∞ dB.
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Fig. 3. C50 distribution for simulated RIRs.

The test set is formed of 32 clean speech files from TIMIT
convolved with a group of 140 RIRs created with image
method. The C50 distribution of the impulse responses fol-
lows also the previous distribution (represented in Fig. 3)
but are totally independent of the training set. Real impulse
responses, obtained from MARDY database [22], are also
included for testing. The distribution of these RIRs in terms
of C50 is shown in Fig. 4. Furthermore, babble noise is also
included in the test set at two arbitrarily chosen SNR levels,
in this case is 3 dB and 17 dB. In total, 35.57 hours of rever-
berant data were used for training the CART model and 86.65
hours for testing.
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Fig. 4. C50 distribution for measured RIRs.

4.2. Figures of merit

The evaluation is performed using two performance figures:
the Pearson coefficient computed as

ρ =

∑N
n=1(yn − y)(xn − x)√∑N

n=1(yn − y)2
∑N
n=1(xn − x)2

; (6)

and the root mean square deviation calculated as

RMSD =

√∑N
n=1(yn − xn)2

N
dB, (7)

where x is the average of N ground truth scores xi, and y
represents the mean of N estimated scores yi.

5. RESULTS

In this section we compare our C50 estimator with the method
of [10] in terms of ρ and RMSD. These results are summa-
rized in Table 3 for simulated (’Sim.’) and Real RIRs.

ρ RMSD (dB)
RIR SNR NIRA Baseline NIRA Baseline

Sim.

3 0.70 0.43 8.74 11.23
17 0.83 0.51 6.32 10.41
∞ 0.85 0.52 6.07 10.47

Real

3 0.44 0.18 9.85 9.53
17 0.62 0.20 7.6 9.00
∞ 0.57 0.20 5.52 9.05

Table 3. Performance comparison of the C50 estimator pro-
posed against the baseline including babble noise.

5.1. CART feature importance

Feature selection is automatically performed as an intrinsic
step of the training processes of the CART model. For the

database employed, 118 of the 309 available features were se-
lected for the trained model. The 10 most important features
are presented in order in the following vector ψ,

ψ = {µφ29, µφ37, sφ51 , σ2φ63 , φ78 , · · ·
σ2φ33 , µφ24 , µφ1 , φ90 , σ

2φ65}.
(8)

5.2. Simulated room impulse responses

The first three rows in Table 3 show the evaluation metrics
obtained with the simulated RIRs from which it can be seen
that NIRA outperforms the envelope spectrum in every envi-
ronment in terms of correlation and deviation. It can also be
seen that both methods are robust to babble noise at the arbi-
trarily chosen test condition of SNR=17 dB. Nevertheless, at
a high noise level of SNR=3 dB the performance of NIRA is
reduced approximately by 2 dB RMSD.

5.3. Real room impulse responses

This set of RIRs creates the most challenging test because the
real impulse response are not included in the training stage;
the CART model was trained using only simulated RIRs.
The last three rows of Table 3 show the performance of both
estimators for this case. NIRA outperforms the envelope
spectrum method in every condition tested except for SNR=3
dB in terms of RMSD where both methods provide similar
performance. It is worth noting that in this test, the range
of C50 values is narrower compared to the simulated RIRs,
which may cause lower deviations.

6. CONCLUSION

We have presented results that confirm other indications in
the literature that C50 has the highest correlation with phone
recognition rate compared to other room acoustic measure-
ments (T60, DRR, Ts, Dτ and Cτ ).
Motivated by this finding, we have presented a non-intrusive
C50 estimator (NIRA) based on training a CART with mul-
tiple features. A new feature was also proposed, employing
the Hilbert phase and it was found to be one of the 10 most
important features for the CART algorithm. This C50 esti-
mator was compared with a baseline C50 estimator algorithm
from the literature. Both methods were tested on a database
comprising clean and noisy reverberant speech obtained with
real and simulated RIRs. The best performance was achieved
with NIRA which outperforms the baseline implemented for
low SNR levels in by least 2.6 dB RMSD.
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