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ABSTRACT

We consider the problem of electroencephalography (EEG)
and magnetoencephalography (MEG) source localization us-
ing beamforming techniques. Specifically, we propose a
reduced-rank extension of the recently derived multi-source
activity index (MAI), which itself is an extension of the clas-
sical neural activity index to the multi-source case. We show
that, for uncorrelated dipole sources and any nonzero rank
constraint, the proposed reduced-rank multi-source activity
index (RR-MAI) achieves the global maximum when eval-
uated at the true source positions. Therefore, the RR-MAI
can be used to localize multiple sources simultaneously. Fur-
thermore, we propose another version of the RR-MAI which
can be seen as a natural generalization of the proposed index
to arbitrarily correlated sources. We present a series of nu-
merical simulations showing that the RR-MAI can achieve
a more precise source localization than the full-rank MAI in
the case when the EEG/MEG forward model becomes ill-
conditioned, which in our settings corresponds to the case of
closely positioned sources and low signal-to-noise ratio.

Index Terms— Electroencephalography, magnetoen-
cephalography, beamforming, reduced-rank signal process-
ing, MV-PURE estimator, dipole source localization

1. INTRODUCTION

The linearly constrained minimum variance beamformer
(LCMV) [1] remains a backbone of spatial filtering appli-
cations, which includes the case of dipole source localiza-
tion and dipole signal estimation from electroencephalo-
graphic (EEG) and magnetoencephalographic (MEG) mea-
surements [2–5]. Extensions of the classic LCMV beam-
former to the case of simultaneous multiple source local-
ization have been recently introduced in [5, 6]. Such multi-
source extensions showed an improved performance in the
localization of sources of brain activity from EEG or MEG
measurements in the case of correlated sources. In particular,
the multi-source activity index (MAI) is proposed in [5] as
an extension of the classic neural activity index introduced
in [2] for the single-source case. However, it has already
been demonstrated in [7] that the LCMV beamformer is
inadequate if the EEG/MEG forward model becomes ill-
conditioned, e.g., as result of closely positioned sources and
high background activity. This inherent limitation of the
LCMV beamformer may also affect the performance of the
MAI by limiting its ability to distinguish between closely
positioned sources of brain electrical activity.

On the other hand, it has also been shown that the
minimum-variance pseudo-unbiased reduced-rank estimator
(MV-PURE) offers a drastic gain in performance compared
to the LCMV beamformer when estimating dipole source sig-
nals using EEG in ill-conditioned settings [7]. The MV-PURE
was introduced in [8,9] and can be naturally interpreted as the
reduced-rank extension of the LCMV beamformer. Thus, it
is expected that a reduced-rank extension of the MAI should
provide greater spatial resolution than the full-rank MAI in
such settings.

In this paper, we introduce the reduced-rank multi-source
activity index (RR-MAI) as a reduced-rank extension of the
MAI that achieves its maximum value when evaluated at
the true position of the sources, for the case of uncorrelated
sources and any nonzero rank constraint. Such maximum is
obtained by replacing the covariance matrix in the MAI of the
output of the LCMV by the covariance matrix of the output
of the MV-PURE. In addition, we propose another version of
the RR-MAI which can be seen as a natural generalization of
the proposed index to arbitrarily correlated sources.

In practice, the covariance matrix of the background activ-
ity and the one corresponding to the sources of interest are un-
known, thus they are estimated from the measurements. This
estimation introduces a perturbation in the values of the activ-
ity indices, which in turn makes the choice of optimal rank a
key issue for reduced-rank beamformers. For this reason, in
this paper we evaluate the performance of the proposed RR-
MAI as a function not only of the SNR, but of the rank as well.
We show that reducing the rank of the RR-MAI yields signif-
icantly smaller localization error compared with the full-rank
MAI for a range of rank constraints.

The paper is organized as follows: in Section 2 we in-
troduce the EEG/MEG measurement model considered, the
LCMV beamformer, and the single- and multi-source neural
activity indices. Then, in Section 3 we introduce the pro-
posed RR-MAI, and in Section 4 we show through a series
of numerical examples its applicability in dipole source local-
ization under ill-conditioned settings using realistically simu-
lated MEG data. We close with Section 5 where conclusions
are drawn and areas of future research are discussed.

Due to lack of space, all proofs are omitted.

2. PRELIMINARIES

We consider the case of EEG or MEG measurements pro-
duced by l dipole sources using an array of m EEG or MEG
sensors. We assume that the sources’ activity change in time,
but their positions θ = (θ1, . . . ,θl) remain the same during
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the measurement period t = 1, 2, . . . , n, where θi denotes the
position of the i-th source. Then, the m × n spatio-temporal
data matrix Y for a given trial can be modeled as

Y = A(θ)Q+N, (1)

where A(θ) is the m × 3l array response matrix represent-
ing the material and geometrical properties of the medium in
which the sources are submerged relevant for EEG or MEG
measurements, Q is the 3l×n matrix of dipole moments, and
N is the noise matrix representing spontaneous background
brain activity.

In terms of (1), spatial filtering allows for estimation of
dipole source momentsQ (when source locations are known),
and for source localization by defining a neural activity index
as a function of positions θ, with the assumption that the max-
imum value of the activity index corresponds with the true lo-
cation of the sources. In terms of the reduced-rank framework
proposed by us, the first problem has been tackled initially
in [7], and it is the latter source localization problem in which
we focus on this paper.

To our knowledge, the idea of using a neural activity index
as a localizer originates in [2], where the following activity
index (AI) has been proposed for the single-source, i.e., l = 1
in (1):

AI(θ) :=
tr{S(θ)−1}
tr{G(θ)−1}

, (2)

where tr{·} indicates the trace of the matrix,

S(θ) := A(θ)TR−1Y A(θ), (3)

and
G(θ) := A(θ)TR−1N A(θ), (4)

where RY and RN are covariance matrices of Y and N , re-
spectively. The properties of AI(θ) have been throughly in-
vestigated in [2] and derived works, where the main drawback
of AI(θ) was found to be its sensitivity to correlated source
cancellation and its poor performance under low SNR condi-
tions.

To circumvent this difficulty, a multi-source extension of
AI(θ) has been recently proposed in [5], among other localiz-
ers. Namely, the following multi-source activity index (MAI)
has been proposed in [5] for the general case l ≥ 1:

MAI(θ) := tr{G(θ)S(θ)−1} − 3lx, (5)

where lx is the unknown number of concurrently active
sources. The key properties of MAI(θ) are summed up
in the following theorem [5, p. 485]:

Theorem 1 The MAI(θ) in (5) is a non-negative and bounded
function of θ, which reaches its global maximum for θ = θ0,
where θ0 are the true source locations, in which case lx = l,
where l is the number of active sources. The global maximum
is of the form:

max
θ

MAI(θ) = MAI(θ0) =

tr{G(θ0)S(θ0)−1} − 3l = tr{RQG(θ0)}, (6)

where RQ is the covariance matrix of Q.

The applicability of the MAI(θ) has been already demon-
strated in [5]. In particular, a practical method for de-
termining the number of active sources can be deducted

from Theorem 1 as follows: initiate the search with lx =
1, find maxθ MAI(θ), and increase lx until the value of
maxθ MAI(θ) saturates. Thus, from now on we assume that
the number of active sources l has been identified. On the
other hand, it shall be noted that the maximum of MAI(θ)
is achieved for S(θ0)−1, which is the covariance matrix of
the output of the LCMV filter [8–11] (denoted by ΦLCMV)
evaluated at the true source locations:

ΦLCMV := S(θ0)−1A(θ0)TR−1Y . (7)

However, small changes in S(θ0) may cause huge changes
in S(θ0)−1 if the former is ill-conditioned [12]. In our case,
this could be the result of closely positioned sources and high
background activity. In such situations, G(θ0) will be ill-
conditioned as well. Furthermore, ill-conditioning can also
be the result of using the estimates R̂Y and R̂N instead of RY
and RN, respectively.

Let us now introduce the following estimate:

M̂AI(θ) := tr{Ĝ(θ)Ŝ(θ)
−1
} − 3lx, (8)

where
Ĝ(θ) := A(θ)T R̂N

−1
A(θ), (9)

and
Ŝ(θ) := A(θ)T R̂Y

−1
A(θ). (10)

Obviously, the value of (8) will differ from (5) for a given θ.
More crucially, its maximum value is likely to change from
θ = θ0 due to sensitivity of S(θ0)−1 to even smallest changes
of ill-conditioned S(θ0). This is a fundamental problem as it
makes source localization using MAI(θ) very prone to errors
in ill-conditioned settings. In the next section, we provide
a solution that allows for robust source localization in ill-
conditioned settings by introducing reduced-rank extension
of the MAI(θ).

3. RR-MAI ACTIVITY INDEX

In order to alleviate the aforementioned shortcomings of the
multi-source activity index defined in (5), we introduce its
reduced-rank extension as follows:

RR-MAIT1(θ, r) := tr{G(θ)PR(G(θ)r)S(θ)−1}−r, (11)

where r is a natural number such that 1 ≤ r ≤ 3l, and
PR(G(θ)r) is the orthogonal projection matrix ontoR (G(θ)r),
i.e., the subspace spanned by the r eigenvectors correspond-
ing to the r largest eigenvalues of G(θ). The following theo-
rem establishes the key properties of the RR-MAIT1(θ, r):

Theorem 2 Let us fix a rank constraint r such that 1 ≤ r ≤
3l, and consider uncorrelated sources such that

RQ = I3l. (12)

Then RR-MAIT1(θ, r) in (11) is a non-negative and bounded
function of θ, which reaches its global maximum for θ = θ0,
where θ0 are the true source locations. The global maximum
is of the form:

max
θ

RR-MAIT1(θ, r) = RR-MAIT1(θ0, r) =

tr{G(θ0)PR(S(θ0)r)S(θ0)−1} − r =

tr{PR(S(θ0)r)G(θ0)}, (13)
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where PR(S(θ0)r) is the orthogonal projection matrix onto
R (S(θ0)r), i.e., the subspace spanned by the r eigenvectors
corresponding to the r largest eigenvalues of S(θ0).

It should also be noted that R (S(θ0)r) = R (G(θ0)r) for
1 ≤ r ≤ 3l under the assumption in (12). Due to lack of
space, we omit the proof of this fact.

Theorem 2 shows that the RR-MAIT1(θ, r) achieves its
maximum when the covariance matrix S(θ0)−1 of the output
of the LCMV is replaced by

PR(S(θ0)r)S(θ0)−1 = PR(S(θ0)r)S(θ0)−1PR(S(θ0)r),
(14)

which corresponds to the covariance matrix of the output of
the MV-PURE estimator [8,9] (denoted by ΦMVP) evaluated at
the true source locations:

ΦMVP := PR(S(θ0)r)ΦLCMV. (15)

The MV-PURE has been recently recognized as a natural
reduced-rank extension of the LCMV beamformer [7]. In
particular, if we consider an eigenvalue decomposition (EVD)
of S(θ0) as

EVD(S(θ0)) := U0Σ0U
T
0 , (16)

with eigenvalues organized in nonincreasing order, then it is
simple to verify that

PR(S(θ0)r)S(θ0)−1 = U0Σ†0rU
T
0 , (17)

where Σ0r is obtained from Σ0 by replacing its r + 1, . . . , 3l

diagonal entries by zeros, and Σ†0r is the Moore-Penrose
pseudo-inverse of Σ0r [13]. Therefore, by targeting (14)
in the place of S(θ0)−1, and by choosing an appropriate
rank constraint, we ensure that (11) is fully robust to an ill-
conditioned S(θ0) possessing vanishingly small singular val-
ues σ0r+1

, . . . , σ03l , unlike the full-rank MAI(θ) described
in Section 2.

It is important to find out how Theorem 2 can be general-
ized for any positive definite RQ. Such condition is presented
in the following proposition:

Proposition 1 Let us fix a rank constraint r such that 1 ≤
r ≤ 3l, and let RQ be any positive definite matrix. Further-
more, let us define

K(θ) := A(θ)TR−1N A(θ0), (18)

and
Yr(θ) := K(θ)TPR(G(θ)r)G(θ)−1K(θ). (19)

Then,

max
θ
{tr{Yr(θ)}} = tr{Yr(θ0)} = tr{PR(G(θ0)r)G(θ0)},

(20)
where θ0 are the true source locations. Moreover, we have

max
θ

RR-MAIT1(θ, r) = RR-MAIT1(θ0, r) (21)

if

max
θ
{tr{RQYr(θ)}} = tr{RQPR(G(θ0)r)G(θ0)}. (22)

A few comments regarding Proposition 1 are in place here.
Firstly, it should be noted that Yr(θ) in (19) cannot be used
as a source localizer function on its own, as it explicitly de-
pends on the unknown θ0 viaK(θ) in (18). Secondly, we note
that, for RQ of the form (12), the fact that RR-MAIT1(θ, r)
achieves its maximum for θ = θ0 follows from Proposition 1,
as in such a case (22) is satisfied immediately from (20).
However, this result does not extend directly to an arbitrary
positive definite RQ, due to the fact that PR(G(θ0)r)G(θ0) −
Yr(θ) is not in general positive semidefinite, even if it corre-
sponds to the difference of two positive semidefinite matrices.
Nevertheless, the simulations we have conducted to date in-
dicate that the less correlated the sources are, the lower the
rank r0 may be chosen such that (22) holds for all rank con-
straints r ∈ {r0, . . . , l}. This suggests a natural direction to-
wards the generalization of Theorem 2 for arbitrary positive
definite RQ.

Furthermore, based on the above considerations, we take
the liberty of proposing another reduced-rank activity index:

RR-MAIT2(θ, r) := tr{G(θ)PR(S(θ)r)S(θ)−1} − r, (23)

for 1 ≤ r ≤ 3l. This alternative index takes advantage of
the result in (14) at θ = θ0 for any positive definite ma-
trix RQ. In this sense, (23) can be seen as a natural gener-
alization of (11). Note that a similar proof of Theorem 2 for
the RR-MAIT2(θ, r) in (23) is currently being developed.

4. NUMERICAL EXAMPLES

We consider the case of estimating the position of l = 3 dipole
sources through the MAI and RR-MAI indices previously de-
scribed. Let us assume that the dipole source components are
allowed to change in time as qi(t) = sin(iπ(t/150− 1)), for
i = 1, 2, . . . , 9, and t = 0, 1, . . . , 300. Then, Q is defined as

Q =

 q1(0) . . . q1(300)
...

...
q9(0) . . . q9(300)

 . (24)

Note that, under these conditions, RQ = I .
MEG measurements were generated using the Helsinki

BEM library [14] with a head model composed by three tes-
sellated meshes which were nested one inside the other in or-
der to approximate the geometry of the scalp, skull, and brain.
Such head model was created based on the anatomical infor-
mation of “Subject # 1” of the MEG-SIM portal, which is a
repository that contains an extensive series of real and simu-
lated MEG measurements for testing purposes [15]. In par-
ticular, the volume modeling the brain was constructed with
11520 triangles, and it is shown in Figure 1.There, we show
the centroids of the triangles under which the dipole sources
were located, as well as the centroids of 100 neighboring
triangles which define a region-of-interest (ROI) around the
sources. The large number of triangles used to approximate
the head’s anatomy in BEM guarantees that the modeling er-
rors are negligible.

Next, the three dipole sources were located 2 mm be-
low their corresponding triangle (i.e., going downward in
the normal direction to the surface). Since the distances
from the dipoles to the surface are not much larger than
the length of the triangles sides, the MEG data generated
through the Helsinki BEM library can be considered to be
a very close approximation of real MEG measurements. In
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Fig. 1. Tessellated mesh of the brain showing the dipoles’
positions (in red) and the ROI around them (in blue).

particular, the MEG data corresponding to the simultane-
ous activation of the three sources were generated using an
array of m = 275 magnetometers with the spatial distribu-
tion of the VSM MedTech MEG system considered in the
MEG-SIM portal. Finally, uncorrelated (in time and space)
random noise N ∼ N (0, σ2) was added to the measure-
ments, and the signal-to-noise ratio (SNR) was defined as
SNR = 10 log10 ‖ AQ ‖F / ‖ N ‖F in decibels (dB), where
|| · ||F denotes the Frobenius norm of the matrix. Different
values of σ2 were set in order to obtain SNR levels of 3, 6,
and 9 dB.

Under these conditions, we computed the indices MAI(θ),
RR-MAIT1(θ, r), and RR-MAIT2(θ, r), for θ corresponding
to a combination of three positions chosen from the cen-
troids in the ROI, but actually located 2, 4, and 6 mm be-
low the surface. Therefore, we evaluated each index for(
100
3

)
× 3 = 485100 possible values of θ. Furthermore, we

tested our proposed reduced-rank indices for different rank
values. In all cases, the estimated positions (denoted by θ̂)
were taken as the value of θ for which the maximum value of
the corresponding index was achieved. Then, the total error
in the estimation was computed as the sum of the minimum
distances from each of the real to the estimated positions. All
calculations were repeated for 100 independent realizations
of the noise, then the mean error was obtained. The results
of this exhaustive evaluation process are shown in Figure 2.
In addition, we performed two-sample t-tests between the er-
rors of MAI and RR-MAI for different rank values (but same
SNR) in order to establish if an improvement in the perfor-
mance was indeed achieved. Our results show that significant
improvement can be obtained through the RR-MAI estimates
with a considerable rank reduction, specially for the case of
low SNR. Note that the results only show a range of rank
values for each of the two different types of the RR-MAI, but
other values were explored as well.

5. CONCLUDING REMARKS

We proposed a novel reduced-rank multi-source activity index
for robust source localization in the case of ill-conditioned
EEG/MEG forward models. Such ill-conditioning may arise
as a result of closely positioned sources and low SNR. Our
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Fig. 2. Mean localization errors as a function of SNR and
rank. The vertical lines on top of the bars indicate the (±)
standard error, while horizontal lines indicate those groups
with significant differences (*p < 0.05, **p < 0.01).

numerical examples showed that the reduced-rank neural in-
dices offered significant improvement in the performance in
comparison to the corresponding full-rank index, which it-
self allows for numerically efficient procedure to determine
the number of active sources. Future work will focus on
providing further theoretical insight for the proposed activ-
ity indices, as well as deriving an automated rank-selection
criterion, and introducing a computationally efficient method
for iterative source localization. The proposed method shall
be also validated against a range of other source localization
methods on a real EEG and MEG data.

4744



6. REFERENCES

[1] O. T. Frost, “An algorithm for linearly constrained adap-
tive array processing,” Proc. IEEE, vol. 60, no. 8, pp.
926–935, Aug. 1972.

[2] B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and
A. Suzuki, “Localization of brain electrical activity via
linearly constrained minimum variance spatial filtering,”
IEEE Trans. Biomed. Eng., vol. 44, no. 9, pp. 867–880,
Sept. 1997.

[3] K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz,
and Y. Miyashita, “Reconstructing spatio-temporal ac-
tivities of neural sources using an MEG vector beam-
former technique,” IEEE Trans. Biomed. Eng., vol. 48,
no. 7, pp. 760–771, July 2001.

[4] D. Gutiérrez, A. Nehorai, and A. Dogandžić, “Perfor-
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