
POWER ALLOCATION FOR GAUSSIAN MULTIPLE ACCESS CHANNEL WITH NOISY
COOPERATIVE LINKS

Songze Li, Emrah Akyol, and Urbashi Mitra

University of Southern California
Ming Hsieh Department of Electrical Engineering
University Park, Los Angeles, CA 90089, USA.

ABSTRACT

In this paper, a new coding scheme for the multiple access chan-
nel (MAC) with noisy cooperative links is proposed. The coopera-
tion cost is modelled by powers spent on exchanging common in-
formation at transmitters. The optimal power allocation policy is
derived to explore the tradeoff between cooperation and transmis-
sion. For some important cases, optimal power allocation that max-
imizes weighted sum rate, is found analytically. The sufficient and
necessary condition for which the sum and the individual rates are si-
multaneously maximized, is identified. Analytical and numerical re-
sults suggest that the transmitter, whose power budget is dominated
by that of the other, acts purely as a relay. The cooperation gain
becomes more significant when the difference between the power
budgets is smaller.

Index Terms— multiple access channel, cooperation cost,
power allocation, convex optimization

1. INTRODUCTION

In cellular networks, user cooperation provides spatial diversity
against channel fading and can increase the data rate [1, 2]. In this
paper, we propose a scheme for two spatially separated transmitters
to communicate cooperatively to the common destination. Before
channel inputs are generated, two transmitters exchange information
through noisy cooperative links which are orthogonal to the MAC,
and jointly access the channel with some knowledge of the other’s
message.

If the links between transmitters are noise-free and rate-limited,
the cooperation can be realized by holding a conference [3, 4],
where two transmitters iteratively communicate words as determin-
istic functions of respective messages and the words previously
heard from the partner. We cannot take this approach here because
the words are corrupted by Gaussian noise. We ask each transmitter
to encode the message they want to share with the other (common
message) independently over the noisy cooperative links. The
power spent on sending common messages, which helps to enlarge
the capacity region, can be viewed as the cooperation cost.

Another transmitter-cooperation scheme is presented in [2],
where the cooperation occurs in the same band with the MAC chan-
nel. Our scheme is different; by imposing orthogonality, the signals
intended exclusively for the receiver will not be overheard by the
other transmitter.
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FA9550-12-1-0215, and DOT CA-26-7084-00.

Cooperation over resource (e.g., energy and bandwidth) limited
networks has been widely explored in the literature. The survey [5]
listed a series of results on the power allocation between source and
relay in the relay networks. Power allocation strategy were also de-
signed for wireless sensor networks with cooperative sensors to re-
duce energy cost and to improve outage performance [6, 7]. The
same idea of modelling cooperation cost by the power to exchange
common message appeared in [8], where a single user chooses to
join the coalition maximizing his utility which is discounted by co-
operation cost.

Over the capacity region of the proposed scheme, we find the
optimal power allocation to maximize a weighted sum rate. This is
a convex problem, and we seek to characterize the optimal policy
by analytically deriving the closed-form expressions for the optimal
powers and resulting rates. Similar tasks were performed in [9–11]
for the capacity region in [2].

Our main contributions are as follows: we derive the capacity re-
gion for the proposed scheme with orthogonal cooperation and trans-
mission links. Fixing some power values, we find the optimal power
allocation policy for the sum rate and individual rate each. We also
identify the condition for which the two optimal policies match and
thus we can maximize arbitrarily weighted sum rates. For the non-
matching case, we define the optimization problem and derive the
associated KKT conditions for global optimality.

2. GAUSSIAN MAC WITH ORTHOGONAL
COOPERATION AND TRANSMISSION CHANNELS

The system configuration is exhibited in Fig. 1. Two transmitters
Tx1 and Tx2, each with power budget P1 and P2, are communi-
cating via a dedicated cooperation channel which is orthogonal to
the MAC channel, e.g., parallel frequency bands. The cooperation
links are also corrupted by Gaussian noise, i.e., Zn1 „ N p0, σ2

1Iq,
Zn2 „ N p0, σ2

2Iq, I is the identity matrix.

Tx2

Tx1

+ Rx

+

+

Fig. 1. MAC with noisy cooperative links.
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Communication is over T blocks of length n, where each trans-
mitter has one message to send in each block. In block t, message
Wiptq at transmitter i, i P t1, 2u is split into common and private
parts, i.e.,Wiptq “ pWicptq,Wipptqq. In contrast to [3,4], we gener-
ate the Gaussian codewords V n1 pW1cptqq, V n2 pW2cptqq , subject to
average power constraints P12 and P21, to exchange common mes-
sages. The rates of W1cptq pR1cq, W2cptq pR2cq satisfy:

R1c ď
1

2
log

ˆ

1`
P12

σ2
2

˙

, R2c ď
1

2
log

ˆ

1`
P21

σ2
1

˙

. (1)

In the same block t, we perform superposition coding for the
MAC. We generate Xn

1p pW1ppt´ 1qq „ N p0, P1pIq at Tx 1,
Xn

2p pW2ppt´ 1qq „ N p0, P2pIq at Tx 2, and Gaussian codeword
rXn
pW1cpt´ 1q,W2cpt´ 1qq at both transmitters subject to unit

power constraint. The channel inputs:

Xn
1 “ Xn

1p `
?
P1c

rXn, (2a)

Xn
2 “ Xn

2p `
?
P2c

rXn. (2b)

The received signals at Tx1 pY n1 q, Tx2 pY n2 q, and the receiver
pY n0 q over the n channel uses are:

Y n1 “V n2 ` Z
n
1 , (3)

Y n2 “V n1 ` Z
n
2 , (4)

Y n0 “Xn
1 `X

n
2 ` Z

n
0 . (5)

where Z1, Z2, and Z0 are real valued white Gaussian noise at re-
spective terminals.

The receiver generates the message estimates xW1pt ´ 1q and
xW2pt´ 1q based on Y n0 ptq:

´

xW1pt´ 1q, xW2pt´ 1q
¯

“ φpY n0 ptqq. (6)

The rate pair pR1, R2q is said to be achievable if there exists a
sequence of pn, 2nR1 , 2nR2q codes such that

lim
nÑ8

Pr
”

pW1,W2q ‰

´

xW1, xW2

¯ı

“ 0. (7)

Define

U1
∆
“

1

2
log

ˆ

1`
P1p

σ2

˙

`
1

2
log

ˆ

1`
P12

σ2
2

˙

U2
∆
“

1

2
log

ˆ

1`
P2p

σ2

˙

`
1

2
log

ˆ

1`
P21

σ2
1

˙

U1
s

∆
“

1

2
log

ˆ

1`
P1p ` P2p

σ2

˙

`
1

2
log

ˆ

1`
P12

σ2
2

˙

`
1

2
log

ˆ

1`
P21

σ2
1

˙

U2
s

∆
“

1

2
log

ˆ

1`
P1p ` P2p ` P1c ` P2c ` 2

?
P1cP2c

σ2

˙

Cco ∆
“

ď

PPP

"

pR1, R2q : R1 ď U1, R2 ď U2,

R1 `R2 ď mintU1
s , U

2
s u

*

(8)

where P ∆
“

 

pP1p, P2p, P1c, P2c, P12, P21q : P1p ` P1c ` P12 ď

P1, P2p ` P2c ` P21 ď P2

(

.

Theorem 1. Cco is the capacity region of of the Gaussian MAC with
orthogonal noisy cooperative links.

Proof. The achievability part follows by recognizingW1p, W2p and
pW1c,W2cq are mutually independent, and the achievable rates are
the same as those for the three-user Gaussian MAC. The converse
and more detailed proofs are in [12].

Remark 1. In (8), when P12 “ P21 “ 0, no information is ex-
changed between transmitters, and Cco reduces to the capacity re-
gion of the Gaussian MAC without cooperation [13]. For noise-
less inter-transmitter channels, pσ2

1 “ σ2
2 “ 0q, only U2

s is finite
and limits the achievable rates. Total cooperation is optimal where
two transmitters jointly encode pW1,W2q with their full transmis-
sion powers.

Because Cco is convex, every boundary point of Cco can be com-
pletely specified by some pU1, U2, U

1
s , U

2
s q. Maximizing Rα

∆
“

αR1 ` R2 for arbitrary α ě 0 over Cco is a convex program and
can be solved by a standard convex optimization solver.

To gain insights about how to allocate power optimally, we con-
sider equal noise variances at all terminals, i.e., σ2

1 “ σ2
2 “ σ2,

and define Si
∆
“

Pi
σ2

, Sip
∆
“
Pip
σ2

, Sic
∆
“
Pic
σ2

, and Sij
∆
“
Pij
σ2

for

i, j P t1, 2u. Then P {σ2 in (8) can be replaced by S for S P S ∆
“

 

pS1p, S2p, S1c, S2c, S12, S21q : S1p ` S1c ` S12 ď S1, S2p `

S2c ` S21 ď S2

(

.

3. POLICY FOR SUM RATE MAXIMIZATION

When α “ 1, we are maximizing the sum rate. Constraints in (8) on
individual rates are not active, and we are maximizing mintU1

s , U
2
s u

over S. We first fix the power pair pS1c, S2cq, as well as Ssp
∆
“

S1p`S2p to makeU2
s constant, and maximizeU1

s over the constraint
set of S1p. For each pS1c, S2cq, S1r

∆
“ S1 ´ S1c is the remaining

power at transmitter 1, S2r
∆
“ S2 ´ S2c is the remaining power at

transmitter 2. Then U1
s can be rewritten as U1

s pS1pq “
1

2
log

`

p1`

SspqfpS1pq
˘

where

fpxq “ ´x2
`pS1r´S2r`Sspqx`p1`S1rqp1`S2r´Sspq (9)

Notice that S1p ď S1r , Ssp ´ S1p “ S2p ď S2r , so S1p P

rmaxt0, Ssp ´ S2ru,mintS1r, Sspus.

We obtain the critical point by setting
dfpxq

dx
“ 0, where the

optimal value Ss˚1p for maximizing U1
s pS1pq is given by:

Ss˚1p “

$

’

&

’

%

0, S1r ď S2r ´ Ssp

pS1r ´ S2r ` Sspq{2, S2r ´ Ssp ă S1r ă S2r ` Ssp

Ssp, S1r ě S2r ` Ssp

.

(10)

Fig. 2. Optimal power allocation for U1
s pS1pq.

Once two transmitters agree upon the power each spends trans-
mitting the common messages, we can plot (10) in Fig. 2. Firstly,
Ss˚1p is a non-decreasing function of S1r . When transmitter 1 has
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much less power left compared to transmitter 2, i.e., S1r ď S2r ´

Ssp, no private message should be transmitted at transmitter 1, and
all of its remaining power should be assigned to the cooperative link
and S12 “ S1r . However, when transmitter 1 has much more power
left, S1r ě S2r ` Ssp, transmitter 2 should send W2c “ W2 to the
stronger partner to forward to the receiver pS21 “ S2rq. When the
remaining powers are comparable, |S1r ´ S2r| ď Ssp, Ss˚1p should
increase linearly with respect to S1r .

The optimal sum rate is found by realizing R˚s pS1c, S2c, Sspq
∆
“ min

 

U1
s pS

s˚
1p q, U

2
s pS1c, S2c, Sspq

(

, and the overall maximal sum
rate is R˚s “ max

S1c,S2c,Ssp

 

R˚s pS1c, S2c, Sspq
(

.

4. POLICY FOR MAXIMIZING WEIGHTED SUM RATE

Next, without loss of generality, we assume α ą 1 1 and rewrite
Rα as pα ´ 1qR1 ` pR1 ` R2q. Have derived the optimal policy
to maximize U1

s in (10), we can determine the scenarios where the
optimal policy maximizingR1 coincides with (10), and combine the
two policies to construct the overall optimal policy.

Recall in (8), R1 is upper bounded by U1. For fixed pS1c, S2c,
Sspq, we find S1˚

1p over the constraint set to maximize U1pS1pq “

1

2
logp1 ` S1pq `

1

2
logp1 ` S1r ´ S1pq by taking derivative with

respect to S1p:

S1˚
1p “

$

’

&

’

%

Ssp ´ S2r, S1r ď 2pSsp ´ S2rq

S1r{2, 2pSsp ´ S2rq ă S1r ă 2Ssp

Ssp, S1r ě 2Ssp

. (11)

Here, to maximize R1, S1p should never be set to 0.

Definition For fixed pS1c, S2c, Sspq, a matching occurs when
Ss˚1p “ S1˚

1p .

Lemma 1. There exists triples pS1c, S2c, Sspq such that the optimal
policy Sb˚1p to maximize pα´ 1qU1pS1pq ` U

1
s pS1pq, is given by:

Sb˚1p “

$

’

&

’

%

S1r{2, S1r ă S2r ` Ssp, and S2r “ Ssp

Ssp, S2r ` Ssp ď S1r ă 2S2r

Ssp, S1r ě 2 maxtS2r, Sspu

. (12)

Proof. The set of constraints on pS1r, S2r, Sspq in (12) is obtained
by finding the feasible set which makes a matching possible. Under
this condition, U1 and U1

s are maximized simultaneously, so is pα´
1qU1 ` U

1
s .

Here, the optimal policy Sb˚1p is independent of α because of
the matching. We see from (12) that under the matching condition,
similarly as in (10), Sb˚1p is a non-decreasing function of S1r , and
Sb˚1p “ Ssp when the remaining power at transmitter 1 dominates
that at transmitter 2, which implies transmitter 2 should not send any
private message. When S1r ă S2r ` Ssp, the optimality of S1p

can be guaranteed without considering α only when transmitter 1
decides to use same amount of power for its private message pW1pq

as transmitter 2 uses to communicate its common message pW2cq,
i.e., S1p “ S21, and the optimal thing to do in this case at transmitter
1 is to equally split the remaining power between S1p and S12 so that
S1p “ S12 “ S21. Notice that different from the optimal rule for the
sum rate, when a matching occurs, Sb˚1p should always be positive,

1The case of α ă 1 can be similarly treated.

1

2

3

Fig. 3. optimal rate pairs

however small S1r , this follows by the assumption α ą 1 and the
optimal rule for U1pS1pq in p11q.

We note that similarly in [9, 10], the authors reduced the num-
ber of variables and convexified the optimization problem by first
identifying the matching condition.

Theorem 2. For pS1c, S2c, Sspq satisfying the matching condition.
The overall optimal policy S˚1p “ Sb˚1p and corresponding optimal
weighted sum rate R˚α is given by:

pα´ 1qU1pS
b˚
1p q ` U

1
s pS

b˚
1p q, U

2
s ě U1

s pS
b˚
1p q (13a)

pα´ 1qU1pS
b˚
1p q ` U

2
s , U1pS

b˚
1p q ď U2

s ă U1
s pS

b˚
1p q (13b)

αU2
s , U

2
s ă U1pS

b˚
1p q (13c)

Proof. After incorporating another sum rate constraint U2
s , which is

a constant for given pS1c, S2c, Sspq, (13a), (13b), (13c) correspond
to regions 1, 2, and 3 in Fig. 3. It is obvious that the dark dot is the
optimal rate pair for each scenario.

For general non-matching pS1c, S2c, Sspq, we solve the convex
optimization problem to find Sn˚1p maximizing pα ´ 1qU1pS1pq `

U1
s pS1pq. For α ą 1:

minimize ´ pα´ 1q logp1` S1pq ´ α logp1` S12q

´ logp1` S21q (14)
subject to S1p ` S12 ď S1r, (15)

Ssp ´ S1p ` S21 ď S2r, (16)
S1p, S12, S21 ě 0. (17)

Associating Lagrangian multipliers λ1, λ2 ě 0 to (15) and (16),
and also ε1p, ε12, ε21 ě 0 to (17), we find the Karush-Kuhn-Tucker
(KKT) conditions [14] for optimality:

α´ 1

1` S1p
` ε1p “ λ1 ´ λ2, (18)

α

1` S12
` ε12 “ λ1,

1

1` S21
` ε21 “ λ2 (19)

λ1pS1p ` S12 ´ S1rq “ 0, (20)
λ2pSsp ´ S1p ` S21 ´ S2rq “ 0, (21)
ε1pS1p “ ε12S12 “ ε21S21 “ 0. (22)

By (19), we have the following inequalities:

λ1 ´ λ2 ě
α´ 1

1` S1p
(23)
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λ1 ě
α

1` S12
ą 0, λ2 ě

1

1` S21
ą 0 (24)

Therefore, by (20) and (21), all remaining power budgets should
be used for the optimal allocation:

S1p ` S12 “ S1r, S1p ´ S21 “ Ssp ´ S2r. (25)

If the optimal value for one of S1p, S12 and S21 is 0, the other
two can be found by (25). If the optimal values for S1p, S12 and S21

are all strictly positive, the equalities in (23)-(24) will hold and the
optimal value Sn˚1p can be found by solving the equation:

α´ 1

1` S1p
“

α

1` S1r ´ S1p
´

1

1` S1p ` S2r ´ Ssp
. (26)

5. NUMERICAL RESULTS

We use CVX [15] to numerically find and compare the optimal
power allocation for different α values in Table 1. S1 “ S2 “ 30dB.

α S1p S12 S1c S2p S21 S2c

1 10.8 10.6 29.9 10.8 10.6 29.9
100 18.7 16.9 29.4 20.6 -55.8 29.5

Table 1. Optimal power (dB) for symmetric and large α.

For the symmetric case, α “ 1, two transmitters have identical
optimal power allocations: most part of power is assigned for com-
mon information transmission, and the remaining is split approx-
imately equally between cooperation and private message. When
α " 1, two transmitters should jointly transmit only W1c, i.e.,
S21 “ 0. Also at both transmitters, more power should be allocated
to private message transmission compared to the symmetric case.

Next, we explore the impact of power ratio η ∆
“ S2{S1 on the

optimal policy to maximize the sum rate, pα “ 1q. S2 “ 10dB.

η S1p S12 S1c S2p S21 S2c

1 3.0 1.7 8.1 3.0 1.7 8.1
0.1 19.5 -3.5 10.0 -66.4 -68.4 10.0
0.01 30.0 -13.9 10.0 -62.6 -66.0 10.0

Table 2. Optimal power (dB) for different η.

When two transmitters have same power budget, most of the
power should be given to the common information transmission.
When the power budget at one transmitter starts to dominate the
other, the transmitter with less power budget should spend all of its
power to relay the common message of its stronger partner, which
implies a unidirectional cooperation.

To understand how much performance gain is achieved by the
proposed cooperative scheme, we plot the prelog factor, which is half

for non-cooperative Gaussian MAC [13]: R1`R2 ď
1

2
logp1`S1`

S2q, for various η values across different SNR regimes in Fig. 4. We
find that for all η and SNR values, the prelog factors of this scheme
are at least 0.5. The performance gain resulting from the cooperation
is more significant at the medium SNR. Also transmitters with more
balanced power budgets benefit more from cooperation, this property
can be used to guide the selection of cooperation partners.
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Fig. 4. prelog factor of the proposed cooperative scheme.

Next, we plot the sum rates in Fig. 5 when using the optimized
policy and a simple policy which divides Pi equally among Pip, Pic
and Pij at each transmitter.
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Fig. 5. Sum rates resulting from the optimal policy and an equal
allocation policy.

We observe for both policies, the sum rates increase approxi-
mately linearly with respect to the total power budget. The optimal
power allocation achieves constantly higher sum rate than the equal
allocation scheme. The performance gap between the two policies
is more noticeable for a more balanced power budget across trans-
mitters, which implies that the optimal policy presented in this paper
provides an easy design rule to guide the power allocation for coop-
erative partner with comparable power budgets.

6. CONCLUSIONS

We propose a new cooperative scheme for accessing the Gaussian
MAC and derive the corresponding capacity region. As the coopera-
tion cost, a part of transmission power is spent to exchange common
messages on noisy links. Fixing a part of the power allocation policy,
we identify the existence of a matching and give closed form expres-
sions of optimal policy to maximize αR1 ` R2, α ě 1. Also, we
solve a constrained convex optimization problem to tackle the more
general non-matching situations. Numerical results demonstrate the
performance gain by allocating power optimally and indicate that
it is more beneficial to implement this scheme on transmitters with
more balanced power budgets.
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