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ABSTRACT

Meditation is a fascinating topic that is still relatively poorly
understood. To investigate its physiological traits, electroen-
cephalograms (EEG) were recorded during meditation ses-
sions. In a recent study, paroxysmal gamma waves (PGWs)
have been discovered in EEG of meditators practicing Bhra-
mari Pranayama (BhPr). In this paper, the synchrony be-
tween those PGWs is investigated, revealing functional con-
nectivity patterns in the brain during BhPr. Specifically, the
method “Stochastic Event Synchrony” (SES) is applied to
pairs of PGW sequences in order to assess their synchrony.
From those pairwise synchrony measures, large-scale func-
tional connectivity patterns are extracted.

Three subjects possessing different levels of expertise in
BhPr are considered. Strong synchrony can be observed in the
temporal lobes for all three subjects, in addition to long-range
interhemispheric connections. Consistent connectivity pat-
terns are present for exhalation periods of BhPr, while those
patterns are substantially less stationary for inhalation peri-
ods. Interestingly, the synchrony seems to increase gradually
during the meditation sessions. Moreover, the distribution of
synchrony values seems to depend on the level of expertise in
practicing BhPr: the higher the expertise, the more concen-
trated the intensity values.

Index Terms— Paroxysmal gamma wave; Electroen-
cephalogram; Meditation; Bhramari Pranayama; Stochastic
Event Synchrony

1. INTRODUCTION

Meditation refers to a broad variety of practices to train at-
tention and awareness, so as to bring mental processes un-
der greater voluntary control. Bhramari Pranayama (BhPr)
is a yoga type meditation focusing on breathing, with alter-
native long exhalation periods and short inhalation periods.
Regarding the benefit, BhPr may help to ease up the hor-
monal imbalance manifestation, such as hypertension, anxi-
ety, and abnormal blood pressure [1]. Neuroimaging studies
have been conducted to investigate the brain activity during
meditation. Several fMRI studies demonstrated that the tem-
poral lobes are active during meditation [2, 3, 4]. Enhanced

activity in gamma band EEG during meditation has also been
reported [5, 6, 7]; in particular, subjects exhibit paroxysmal
gamma waves (PGWs) in the temporal lobes and some other
brain areas. In earlier work [8], we proposed techniques to ex-
tract PGWs from BhPr EEG in an automated fashion. In this
paper, we build upon our earlier work, and analyze the syn-
chrony between PGWs occurring at different EEG channels,
leading to functional connectivity patterns in the brain during
BhPr meditation. Concretely, we apply the method “Stochas-
tic Event Synchrony” (SES) [9] to quantitatively assess the
similarity of pairs of PGW sequences. We aim to reveal the
functional connections between brain regions during BhPr.
As in [8], we consider three subjects possessing different lev-
els of expertise in BhPr (beginner, intermediate, and expert).

Earlier studies on meditation EEG have reported en-
hanced long-range EEG coherence, suggesting stronger co-
ordination of brain activity. For instance, studies of tran-
scendental meditation (TM) demonstrated enhanced EEG
coherence during practice of TM, along with synchronized
alpha power in the frontal cortex [10, 11, 12]. High-amplitude
gamma-band oscillations and long-range phase-synchrony
were observed as well in the EEG of long-term Buddhist med-
itators [7, 13]. Along those lines, the study at hand explores
synchrony in the gamma band, between PGWs occurring in
different brain regions.

This paper is organized as follows. In Section 2, we
elaborate on our experimental data, and briefly review the
techniques for automated PGW extraction; we outline the
“Stochastic Event Synchrony” (SES) method [9] for quanti-
fying synchrony of 1-D point processes (PGWs in particular).
In Section 3, we present our numerical results. In Section 4,
we offer concluding remarks.

2. METHODS

2.1. Bhramari Pranayama EEG Data

We analyze scalp EEG recorded from three subjects prac-
ticing BhPr meditation; the same data was also analyzed
in [5, 8]. The three subjects possess different levels of ex-
pertise practicing BhPr. The beginner “B” had no experience
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before; the intermediate “I” was trained for a month; and
the expert “E” was trained at least for 4 months. EEG was
recorded during several BhPr sessions, in which each subject
performed approximately 20 breathing episodes. During each
exhalation period, the subject produced a typical humming
bee sound. An ambient sound signal was recorded simul-
taneously to differentiate each breathing period. The EEG
recordings were conducted in an electrically shielded room
using a Biosemi system with 128 active electrodes. The sam-
pling rate was 2048Hz and an analog filter between 1 and 300
Hz was applied. Moreover, notch filters were applied at 50
Hz and every harmonic of 25 Hz to remove the power line
interferences.

2.2. Automated Paroxysmal Gamma Wave Detection

The schematic diagram of the automated procedure proposed
in [8] for PGW extraction is depicted in Fig. 1. First, princi-
pal component analysis (PCA) [14] is applied, to reduce the
number of channels. Let Z 2 RN⇥M denote the EEG record-
ing consisting N channels, with M samples each. Denoting
the eigenvalues of the covariance R of Z by �1,�2, · · · ,�N

in descending order and the corresponding eigenvectors by
u1, u2, · · · , uN , Z can be compressed by retaining the top L

(with L ⌧ N ) dimensions. The compressed data Y 2 RL⇥M

can be obtained as:

Y =
h
u1 u2 · · · uL

iT
Z. (1)

The parameter L is chosen such that:
PL

i=1 �iPN
i=1 �i

� ⇣, (2)

with ⇣ 2 (0, 1] (we choose ⇣ = 0.95).
Next, blind signal separation (BSS) [15] is applied to

identify the sources from the compressed EEG. Our hypothe-
sis is that the compressed data Y in (1) is a linear combination
of independent sources X 2 RL⇥M located in the brain, i.e.,
Y = AX + N , with A 2 RL⇥L the mixing matrix and
N 2 RL⇥M the i.i.d. Gaussian noise. To find X , it is cast as
an inverse problem X = WY , where the weight W 2 RL⇥L

is unknown. BSS method “Second Order Blind Identifica-
tion” (SOBI) [16] is applied to infer this weight matrix W

by:

Ŵ = Û

H [(�1 � �̂

2)�0.5
u1, · · · , (�L � �̂

2)�0.5
uL]

H
, (3)

where �̂

2 is the estimated noise variance, computed using
resting EEG. The unitary matrix Û is obtained as joint di-
agonalizer of the sample estimates.

We developed a morphological filter in [8] to estimate the
PGW rate for each source, which will be explained more into
details in the following. We then select the sources with a

Fig. 1: Automated extraction of PGWs [8].

relatively large number of PGWs. Lastly, the signals from
these selected sources are back-projected in sensor domain,
in order to reconstruct 128-channel EEG data.

By definition, the paroxysmal gamma waves (PGWs) in
meditation EEG are characterized by distinct high-frequency
biphasic patterns, with a shape close to an inter-ictal spike [5]
(see Fig. 2). The automated PGW detection method that we
proposed in [8] exploits the morphological characteristics of
PGWs, as illustrated in Fig. 2.

Fig. 2: Morphological parameters of a PGW [8].

Specifically, it follows the rules: (i) the peak value Vp1

of the main peak must be larger than multiple standard de-
viation of the signal, i.e., Vp1>↵�x, with �x the standard
deviation of the entire signal and ↵ a scalar; (ii) the second
peak Vpp2 must be significantly smaller than the main peak
Vpp1, i.e., ⇢1Vpp1Vpp2⇢2Vpp1 with ⇢1<⇢2<1; (iii) the
trough should be below the onset point, i.e., Von>Vtr; and
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finally (iv) the duration T of the PGW should be smaller than
a constant ⌧ . The morphological parameters (↵, ⇢1, ⇢2, ⌧)
are derived from “true” PGW samples manually extracted
from each individual channel (or source). For each PGW,
the parameters (↵, ⇢1, ⇢2, ⌧) are computed, and extreme val-
ues (↵min, ⇢1min, ⇢2max, ⌧max), are kept as the final repre-
sentative for a particular channel (or source).

We have validated the performance of this method by
comparison with two other methods for spike detection. As
investigated in [8], our method vastly outperforms those two
methods in terms of sensitivity and false alarm rate. It is
computational effective and reliable in detection of PGW.

In this paper, we apply the automated method in [8] to
remove artifacts, and extract components (sources) with a rel-
atively large number of PGWs. Those sources are then back-
projected to sensor domain yielding artifact-free EEG con-
taining PGWs. Finally, the PGW sequences are analyzed by
the SES method to construct functional connectivity patterns
during BhPr.

2.3. Stochastic Event Synchrony

The “Stochastic Event Synchrony”(SES) method [9] assesses
the similarity of pairs of point processes. The PGW sequences
extracted form each EEG channel can be viewed as point pro-
cesses, where each PGW is considered as an event (point).
Unlike classical similarity measures for point processes [9],
SES quantifies the alignment of two point processes using
multiple parameters: time delay �t, variance of the time jit-
ter st, and fraction of coincident events �. SES captures two
different aspects of synchrony: timing precision and relia-
bility, quantified by st and � respectively. Two point pro-
cesses are considered synchronous if they are identical apart
from: (i) a time delay �t; (ii) small deviations in the event oc-
currence times; and (iii) a few event insertions and/or dele-
tions. More precisely, the event timing jitter should be sig-
nificantly smaller than the average inter-event time; and the
number of deletions and insertions should comprise only a
small fraction of the total number of events, corresponding to
a large coincidence rate �.

The SES parameters are computed via statistical inference
in a generative model. The latter can be explained by the sym-
metric procedure shown in Fig. 3 for generating two point
processes x and x

0 with length n and n

0 respectively. First,
a hidden point process v of length ` is generated, with events
vk mutually independent and uniformly distributed in [0, T0].
The point process z and z

0 are obtained by shifting v over
±0.5�t respectively, and slightly perturbing the timing with
variance 0.5st. Finally, x and x

0 are derived from z and z

0

by deleting events with probability pd. b and b

0 are binary
strings indicating whether the events in x and x

0 are coinci-
dent/paired (bk=1 if xk is non-coincident, bk=0 otherwise;
likewise for b0k). As was shown in [9], this procedure can be

Fig. 3: Symmetric procedure relating x and x

0 [9].

summarized by the generative statistical model:

p(x, x0
, b, b

0
, v, �t, st, `) / �

ntot

del

ntot

coY

k=1

N (x0
j
k

� xj
k

; �t, st),

(4)
with (xjk, x

0
j0
k

) pairs of coincident events, ntot
co = n+ n

0 � `

the total number of coincident event pairs, and � as a func-
tion of pd and `. The variables in that model are inferred by
cyclic maximization [9], resulting in estimates of the pairs of
coincident events (xjk, x

0
j0
k

). From the latter, the parameters
�t, st and � can directly be computed.

3. RESULTS AND DISCUSSION

In this paper, SES parameters � and �t=
p
st are used to study

the synchrony of PGW sequences. We define the strength of
connection between each pair of channels (brain locations) by
�, i.e., the faction of coincident events. To infer the brain net-
works, only significantly strong connections will be selected.
Both SES parameters and PGW count are considered in the
selection process: We only keep connections with �>0.75,
�t<0.1Tisi, and pairs of channels with PGW count greater
than the 0.95 percentile of all the channels. We apply those
rules to all three subjects.

The results of SES analysis are shown in Fig. 4. For each
subject, there are two rows of figures: The top row depicts the
normalized power distribution, reflecting the brain activities
during different breathing episodes (either exhalations or in-
halations); the bottom figures display the functional connec-
tivity maps, where the connections are selected according to
the criteria mentioned earlier. The strength of the connections
is defined by �, and color coded. The PGW rate distribution
is displayed in the background to visualize the corresponding
active brain regions. For the sake of simplicity, only colorless
contours of the PGW rate distribution are shown here.

Strong synchrony can be found in temporal lobes for all
three subjects. In addition, consistent patterns of connections
are present for exhalation periods, while it is relatively non-
stationary for inhalation periods. Interestingly, long-range
connections between distinct active brain regions are found
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Fig. 4: Power distribution and connectivity networks with
connection strength � for three subjects (B, I, and E) and
three successive periods of (a) exhalations, and (b) inhala-
tions. L is the total number of connections, and Navg is the
average PGW count of each connection.

Fig. 5: Connectivity map (left) and EEG (right) of B3
with extracted PGW sequences from a pair of (a) adja-
cent channels Ch. 119 and Ch. 123 with (�,�t, �t) =
(97.3%,⌧0.01Tisi, 0s); and (b) distant channels Ch. 41 and
Ch. 123 with (�,�t, �t) = (79.6%, 0.01Tisi, 10ms).

for all three subjects with moderate strength (see Fig. 4). As
an illustration, in Fig. 5 we show PGW sequences extracted
from local and distant pairs of channels. Clearly, there seems
to be synchrony even between distant channels. The observed
large-scale synchrony creates perhaps more coordinated and
effective brain activations.

Another fascinating observation concerns the change in
synchrony during the meditation session. As shown in Fig. 4a,
the number of connections and their strength tend to increase
over time, especially for B (see Fig. 6 left). For each sub-
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Fig. 6: Synchrony measure � for the three subjects. First three
groups from left: Boxplot of � for three successive exhalation
periods for B, I and E. Right: Boxplot of � for the three
subjects (jointly for the three exhalation periods).

ject, the median of � gradually increases along the time. The
distribution of the connection strength � depends on the level
of expertise of practicing BhPr: the higher the expertise, the
more concentrated the strength values (see Fig. 6 right). In-
tuitively, compared to a novice, it may be easier for more ex-
perienced meditators to settle down into the cognitive state of
meditation.

4. CONCLUSIONS

We investigated the synchrony of paroxysmal gamma waves
(PGWs) in electroencephalograms (EEG) recorded during
Bhramari Pranayama (BhPr) meditation. Three subjects with
different levels of expertise in BhPr (beginner, intermediate,
and expert) are considered. To quantify the synchrony of the
PGWs, we applied the “Stochastic Event Synchrony” (SES)
method to pairs of PGW sequences extracted from the EEG.
Specifically, the fraction � of coincident PGWs is used as the
strength of the each connection.

Strong synchrony can be observed in the temporal lobes
for all three subjects, in addition to long-range interhemi-
spheric connections. Consistent connectivity patterns are
present for exhalation periods, while those patterns are sub-
stantially more non-stationary for inhalation periods. Inter-
estingly, the synchrony increases gradually along the time
during meditation. Moreover, the distribution of synchrony
values depends on the level of expertise in practicing BhPr:
the higher the expertise, the more concentrated the synchrony
values.

In the future, we plan to apply multi-dimensional SES to
PGW sequences, which may provide additional insights into
the synchrony measure.
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