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ABSTRACT

The choice of appropriate features for automatic emotion recogni-
tion based on electroencephalographic (EEG) signals remains to date
an open research question. In this paper we explore a wide range
of potentially useful features, including original ones, comparing
them to previous proposals through a rigorous experimental evalu-
ation, using a strict cross-validation protocol. In particular we as-
sess the effectiveness of new spectral features–both in multi-channel
and single-channel EEG setups–for the problem of discriminating
positively and negatively excited emotions. The evaluation is con-
ducted using the ENTERFACE'06 dataset allowing us to study the
behaviour of the tested features across different subjects. Our re-
sults prove the usefulness of various new spectral features even in
single-channel setups. We also observe that the optimal selection
of features is highly subject-dependent. Finally combining different
groups of features we find the valence recognition accuracy to be
possibly as high as 78%.

Index Terms— EEG, emotion recognition, valence, spectral
features, common spatial patterns.

1. INTRODUCTION

While the usage of electroencephalographic (EEG) recording has
been for long confined in the medical field, the recent years have seen
a growing interest in EEG-based brain-computer interfaces (BCI)
for general public applications. In particular EEG-recording has at-
tracted the attention of researchers in the field of affective computing
as part of the effort to perform human-behaviour analysis tasks, espe-
cially automatic emotion recognition. Compared to other modalities
which have been considered in previous work on emotion recogni-
tion, such as speech, facial expressions, gestures or other physiologi-
cal signals [1, 2, 3], EEG has the advantage of capturing information
related to internal emotional states not necessarily resulting in any
observable external manifestations (especially through the audio, vi-
sual or motion modalities).

Emotion recognition is usually approached as a classification
problem where the choice of appropriate features is critical to en-
sure satisfactory recognition accuracy. As far as EEG-features are
concerned, a consensus has not yet been reached as to a standard
set of attributes that could guarantee a successful characterisation
of a human-subject’s emotions. It is nevertheless acknowledged in
the field of neuroscience that a great deal of relevant information is
conveyed by the spectral properties of the EEG signals, where dif-
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ferent types of human activities result in different spectral patterns
appearing in well-specified frequency bands.

In this work we explore a wide range of temporal, spectral and
spatial features potentially useful for emotion recognition, compar-
ing them to previous proposals through a rigorous experimental eval-
uation. In particular we assess the effectiveness of various spectral
features that were not previously envisaged for the problem of clas-
sifying emotions into two-classes: negative versus positive valence
emotions. Moreover, we study the behaviour of the features con-
sidered across different subjects and EEG-electrode locations and
examine the possibility of exploiting features from a single-channel
EEG setup. The latter point is important as it corresponds to a clear
trend in EEG hardware setups for general public applications, which
are expected to be maintained as light as possible. Additionally, our
evaluation is based on a strict protocol that tests for the generaliza-
tion capabilities of the system unlike previous works where a clear
separation between recordings used in the training set and the ones
used in the test set was not always observed [4]. Finally we test vari-
ous combinations of different feature groups with a view to optimize
the recognition accuracy.

The rest of the paper is organized as follows. Section 2 presents
a brief discussion of previous works on EEG-based automatic emo-
tion recognition, then the features that are explored in our work are
introduced in Section 3. Section 4 describes the dataset used for our
evaluation before we expose our results and suggest some conclu-
sions in Sections 5 and 6.

2. RELATION TO PRIOR WORK

EEG-based emotion recognition is a relatively recent research topic
that holds a number of difficulties and challenges. One of the major
challenges, which is inherent to EEG signal analysis in general, is re-
lated to the fact that the recorded signals are easily contaminated by
heavy artefacts resulting from various sources of noise, both phys-
iological (especially due to ocular and head-muscle activities) and
environmental (due to electromagnetic interference). Consequently
EEG recording is usually made under very constrained conditions
(often pressing the subjects to remain as steady as possible) which
adds complexity to the process of data capturing.

In fact, the availability of quality data that can be used to de-
velop the machine learning algorithms needed to address our prob-
lem is critical. Important efforts have been made in this direction [5,
6], though different types of stimuli and emotion annotation strate-
gies were used in different works, making difficult the exploitation
of more than one dataset at a time. Among the publicly available
datasets, we chose ENTERFACE'06 for our work as it has a number
of attractive characteristics (see Section 4).

Consistently with the state-of-the-art in emotion recognition, the
Valence-Arousal (V-A) representation [7, 8] has been adopted by re-
searchers focusing on EEG-based analysis. Valence represents the
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state of being reactive to the stimuli, while arousal expresses whether
the emotion is rather negative or positive. Following work related to
ours [9, 10, 11], we focus on the prediction of the valence value in
this study, postponing the analysis along the arousal axis to a future
work, in order to reach a better understanding of the specific be-
haviour of the features considered along each of these dimensions.

A number of recent studies have examined the question of
feature selection for EEG-based emotion recognition. Both spatio-
temporal and spatio-spectral features have been explored. As far
as the former are concerned, the so-called standard features [12],
corresponding to statistical moments extracted from the temporal
waveforms recorded by different electrodes, have proven useful
[3, 11]. However spectral features have been more largely used.

The work by Li et al. [10] focused on spatio-spectral features
where Common Spatial Patterns (CSP) are extracted in the γ band.
With a band-selection method and CSP being calculated from the
filtered data, the authors performed a binary classification along the
valence dimension. Xu et al. [4] explored spatio-temporal features,
with standard features high order crossings [13, 14], and spectral do-
main features, among them wavelet features and the energy of spec-
tral components in different frequency sub-bands within the 8-30 Hz
range. The authors obtained better results with spectral sub-band
features than with standard features. More recently, Jenke [15] fo-
cused on electrode and feature selection considering statistics of the
signals filtered in the α, θ and β bands, as well as Hjorth parameters
[16].

Our study continues the exploration of new features, yet tak-
ing an original direction, that is considering features amenable to
single-channel EEG-based emotion recognition (essentially alterna-
tive spectral features), while comparing them, through a rigorous ex-
perimental evaluation, to many of the existing features from previous
work (especially as seen in studies considering electrode reduction)
[15, 4].

3. FEATURES FOR EMOTION RECOGNITION

Different types of temporal, spectral and spatial features are consid-
ered in this study. A first subset of them has been already considered
in previous EEG signal analysis tasks, while the second subset is
composed of our new proposals, essentially spectral features, which
are inspired by research performed in another pattern classification
domain where spectral descriptors were extensively studied, namely
the audio signal classification domain [17].

3.1. Previously used features

Two types of features can be distinguished here: the ones used in
previous work using EEG as a modality for emotion recognition and
those exploited in other EEG applications such as Human-Machine
Interfaces.

Of the latter, the most commonly used type of features are the so-
called standard features [12], extracting basic statistical information
of the signal, such as the mean, standard deviation, etc. These can be
considered as limited in the sense that they do not effectively capture
useful information about the spectral characteristics of the signals.
Hence, researchers have considered using features containing spec-
tral information. They are essentially obtained from the spectrogram
of each electrode-signal, computing sub-band power values in either
the α, β, θ or γ band.

Alternatively, spatial features have been extensively used, espe-
cially the Common Spatial Patterns (CSP) [10, 18, 19]. The tech-
nique for extracting CSP designs spatial filters that once applied

to the multi-channel EEG signals yield features that maximize the
inter-class variance in order to facilitate the discrimination of two
classes of EEG signals (in our case the positive end negative valence
classes). We refer the interested reader to [20] for more details.

3.2. Proposed features

Among our proposed features, originally described in [17] and never
previously used for EEG-signal analysis, we can distinguish differ-
ent subsets:

• The first, referred to as Spectral Moments, is a subset of fea-
tures based on the first four statistical moments of the EEG-
signal magnitude spectra:

– spectral centroid: Sc = µ1,
– spectral width: Sw =

√
µ2 − µ2

1,
– spectral asymmetry defined from the spectral skewness:
Sa = 2(µ1)

3−3µ1µ2+µ3

Sw
3 ,

– spectral flatness defined from the spectral kurtosis :
Sk = −3µ1

4−6µ1µ2−4µ1µ3+µ4
Sw

4 − 3,

where moments µi are defined by: µi =
∑K−1

k=0
(fk)

iak∑K−1
k=0

ak
; ak

being the amplitude of the kth component of the Fourier
transform of the signal with a frequency of fk = k

N
.

• Heuristic spectral shape descriptors:

– a description of the spectrum flatness given by:

SF =

∏
k a

1
K
k

1
K

∑
k ak

and Spectral Crest Factors (SCF) defined in each sb
sub-band as :

SCF (sb) =
maxkεsbak
1
K

∑
kεsb ak

– Spectral slope defined as spectral decrease ratio [17]:

Ss =
K

∑K
k=1 fkak −

∑K
k=1 fk

∑K
k=1 ak

K
∑K
k=1 f

2
k − (

∑K
k=1 ak)

2

– Spectral decrease which is given by [17] :

Sd =
1∑K

k=2 ak

K∑
k=2

ak − a1
k − 1

– Spectral variation also known as spectral ”flux” [21]:

Sv = 1−
∑K
k=1 ak(t− 1)ak(t)√∑K

k=1 ak(t− 1)2
√∑K

k=1 ak(t)
2

– Frequency cutoff computed as the frequency below
which 99% of the total spectrum energy is accounted
for.

• Linear Prediction Coding coefficients (LPC) designed as
the first coefficients of the filter given by an order 2 Auto-
Regressive analysis of the signal.

• Autocorrelation coefficients, corresponding to the first coef-
ficients of the inverse Fourier transform of the signal’s peri-
odogram.
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Domain Feature Description Frame [s] Overlap [%]
min, max, skewness, kurtosis, mean, standard deviation, median,

Temporal “Standard” features [12] mean and max of the absolute values of the first differences, 0.5 50
mean and max of the absolute values of the second differences

Frequential
Spectrogram

Spectral Moments, SF, SCF, Cut Off frequency, Autocorrelation, 0.25 50
Slope, Variation, Flatness, LPC

Spatial Common Spatial Pattern θ band, α band, γ band, β band, and all the frequencies 0.25 -
(CSP) [10]

Table 1. Features extracted for EEG-based emotion recognition. The features we propose are printed in bold.

4. DATASET AND EVALUATION PROTOCOL

The dataset selected for our experimental study is ENTERFACE'06
[5] which consists of physiological and EEG recordings of 5 male
subjects watching images conveying a varying emotional content.
Three emotional states of interest are thus considered: calm, posi-
tively excited and negatively excited. Each recording corresponds to
a 15-minute long session and each session contains 30 blocks, 10 per
emotional state. A block is a succession of 5 images corresponding
to a single emotional state. 3 such sessions are available for each
subject. The whole dataset consists of a total of 90 blocks, hence
450 images.

After each block of 5 images the subject is asked to make a
self-assessment of his/her emotional state using the Self-Assessment
Manikin (SAM) [7] technique by giving a score between 1 and 5 for
valence and arousal components.

The images composing each block are taken from a reference
dataset: the International Affective Picture System (IAPS) [22],
which is a database of 1196 pictures with a varied emotional content.
For ENTERFACE'06 recordings, 3 image subsets were selected, one
for each emotional state, according to specific thresholds along the
valence and arousal axes. This resulted in a selection of respectively
106, 71 and 50 pictures for the 3 emotional classes considered.

The EEG signals were recorded through 54 channels at a sam-
pling rate of 1024 Hz.

The features are evaluated through the performance of the clas-
sifiers exploiting them, where the performance is measured as the
valence recognition accuracy. Further, we use a cross-validation pro-
cedure designed in such a way to assess the generalisation ability of
the recognition system. Xu et al. [4] used a 5-fold cross-validation
process, randomly using 80% of the samples for training and 20%
for testing. This approach has the inconvenient not to clearly sep-
arate the recordings used to train the classifier and the ones used to
provide test data, hence limiting the validity of the results. Therefore
we consider a leave-one-block-out protocol where data correspond-
ing to one ENTERFACE'06 image-block is used as a test set and the
rest of the data is used for training. Two alternative schemes are then
evaluated: the inter-session scheme where data from the training set
contains all the sessions including the one of the block used in the
test set; and the the intra-session scheme where blocks used in the
training set and the ones used in the test set originate from a same
session. The results corresponding to each of these situations will be
discussed hereafter.

EEG signal

Classification

Feature

Extraction

Early
Integration

Late Integration

Normalisation
Decision

Functions

FeaturesFusion
in

Pre-processing

blocks

Fig. 1. System Diagram

5. EXPERIMENTS AND RESULTS

In this section, we focus on the different experiments undertaken to
study the features presented above.

In all the experiments we use linear Support Vector Machines
(SVM). Further, Early temporal integration is utilised whereby fea-
tures extracted from local signal-frames (of sizes given in Table 1)
are averaged across the duration of blocks. The classification pro-
cess, as shown in Figure 1, is thus done for each subject separately
using the cross-validation procedure described above.

Features are extracted for each subject across the 54 electrode
locations. Table 2 provides, for each subject, the recognition accura-
cies obtained with the different feature groups, when using features
from all electrodes or just from a single one, namely the central Cz
electrode. It is important to note that accuracies below 50% corre-
spond to useless recognition systems that do not perform better than
chance.

5.1. Subject variability

Consistent with findings of previous works, we observe that the re-
sults vary significantly across the different subjects (naturally, in-
dividuals react differently to subjective stimuli). Interestingly, two
subjects appear to behave in two opposite extreme directions: Sub-
ject 5 whose valence values are predicted with high accuracy (up-
to 73%) and Subject 1 whose emotional states cannot be properly
characterized, yielding scores worse than chance in the majority of
feature configurations, and never exceeding 58%.

Comparing the ground-truth labels resulting from the subjects’
self-assessment with the ground-truth labels of the corresponding
image stimuli (as provided in the IAPS dataset), we find them to
be consistent for Subject 5, but not for Subject 1. This tends to con-
firm that the affective reactions of the latter are quite unusual, hence
probably difficult to predict.
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All electrodes Electrode Cz CSP
Inter-session Intra-session Inter-session Intra-Session Inter-session

Mts SF SCF Mts SF SCF Mts SF SCF Mts SF SCF α γ α + γ
S1 30 % 45 % 48 % 38 % 33 % 32 % 53 % 40 % 28 % 52 % 58 % 35 % 38 % 45 % 45 %
S2 48 % 62 % 65 % 53 % 53 % 52 % 55 % 52 % 60 % 55 % 42 % 35 % 37 % 55 % 58 %
S3 62 % 53 % 48 % 37 % 48 % 53 % 52 % 63 % 70 % 37 % 35 % 33 % 60 % 55 % 60 %
S4 58 % 30 % 45 % 35 % 37 % 45 % 48 % 38 % 50 % 40 % 37 % 35 % 40 % 38 % 47 %
S5 70 % 70 % 73 % 62 % 60 % 58 % 58 % 67 % 57 % 57 % 50 % 57 % 58 % 53 % 57 %

Table 2. Recognition accuracy (along the valence dimension) for a subset (the best) of the proposed features: Moments (Mts), SF, SCF, and
CSP for a dimension of DCSP = 20 for each of the 5 subjects (S1 to S5). Best accuracies are printed in bold.

5.2. Comparing features

For the lack of space, only a selection of features resulting in the best
overall classification results is retained in Table 2. For instance, CSP
features were extracted both on full-band EEG signals and filtered
signals in the θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz) and γ (30-+
Hz) bands. Also for each of these versions the reduced CSP dimen-
sion was varied in the set {2, 4, 20, 40}. The best results have thus
been obtained with the α and γ bands using 20 CSP coefficients. We
notice again a varying behaviour across subjects as different bands
(among α and γ) appear to be preferable for different subjects. Fur-
ther, combining CSP from the two bands does not result in better
scores.

Comparing our new spectral feature proposals to previously ex-
ploited features, including the different CSP variants, we find the
former to outperform the latter in the vast majority of cases. Both
the spectral moments, SF and SCF features turn out to be very use-
ful.

In a second experiment, we combined together different pairs of
the feature groups presented above. The results are given in Table 3
where only the most effective combinations are presented. When no
combination performed better than a single feature group, we kept
the latter. It is found that the winning set of features tend to include
either spectral attributes or CSP, or both. Examining the detailed
results with the aim to better understand the interactions between
different features, we notice that Subject 2 responds very well to a
specific scheme which consists in combinations of 20 CSP features
with Standard features, yielding scores between 76.7% to 78.3%.
The best recognition systems for Subjects 3,4 and 5 also essentially
rely on combinations with CSP but with respectively LPC Coeffi-
cients, spectral moments, and either SF or SCF.

5.3. Generalization ability

In order to assess the generalization abilities of the recognition sys-
tems studied, we examine the results obtained using intra-session
protocol compared to the inter-session protocol (see Section 4). The
results show similar results in intra-session and inter-session proto-
col, appart for subject 3 whose results are improved considering all
sessions for cross-validation. All subjects react differently, and re-
sults that are improved by intra-session scheme differe from one sub-
ject to another, subject 5 has better results in inter-session scheme,
as well as for one feature to another, subject 2 reaching 65 % for
SCF and 48 %for spectral moments in considering all the sessions
obtains respectively 52 % and 53 % for one session.

5.4. Single-channel setup

In a final experiment, we explore the different features separately in
a single-channel EEG setup. In order to do so we select a central

electrode, Cz, being less affected by artifacts. The corresponding
results for the same spectral features are shown in Table 2. Interest-
ingly, with this setup we have similar results to those obtained with
all the electrodes, even reaching 70% accuracy with SCF for subject
3. The single-channel setup is conceivable as most of the necessary
information is found by keeping one of the electrodes.

Score Features Parameters
S1 65 % Spectral power in α band mean
S2 78 % CSP β, α + Standards DCSP = 20
S3 70 % SCF Central elec. (Cz)
S4 67 % Spectral Variation
S5 77 % CSP γ + SF DCSP = 20 or 40

Table 3. Best score with its associated features for each subject

6. CONCLUSION AND FUTURE WORK

In this paper, we conducted a large number of experiments to study
the usefulness of a wide range of EEG-features, including original
ones, for a binary classification of emotions along the valence dimen-
sion. Special care was taken in using an adequate cross-validation
protocol designed to assess the generalisation abilities of the tested
recognition systems.

Our results show that the new spectral shape features that we
propose are very competitive compared to previously used ones.
They are additionally amenable to successful emotion recognition
in single-channel setups, which holds a great potential for general
public applications.

Future work will consider automatic feature selection algorithms
to enable us to efficiently explore the space of feature combinations.
Additionally, we will study the behaviour of the features when con-
sidering the arousal dimension.
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