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ABSTRACT

The goal of this paper is to build a detector of event-related potentials
(ERP) in single-trial EEG data. This problem can be reformulated
as a parameter estimation problem, where the parameter of interest
is the time of occurrence of the ERP. This type of detector has clin-
ical applications (study of schizophrenia, fatigue), or applications
in brain-computer-interfaces. However, the poor signal-to-noise ra-
tio (SNR) and lack of understanding of the noise generating process
make this a challenging task. In this paper, we take a Bayesian ap-
proach, samples are drawn from the posterior of the parameter of
interest using Markov chain Monte Carlo (MCMC). Different noise
covariances from Gaussian processes are tested. We show that it is
possible to pick up the ERP signal in spite of the poor SNR with an
appropriate choice of noise covariance structure.

Index Terms— EEG, event-related potentials (ERP), MCMC,
Gaussian process.

1. INTRODUCTION

Electrical activity from the brain can be measured with electroen-
cephalography (EEG). This type of recordings help unveil recurrent
patterns, such as event-related potentials (ERPs). An ERP is a type
of signal that arises before or after a specific stimulus, usually con-
sisting of a number of positive or negative peaks, also called com-
ponents. In order to study them, the typical procedure is to present
a series of stimuli to a participant while recording their EEG. The
whole recording is then cut into smaller intervals containing a single
stimulus. Each of these intervals is called a trial. Traditionally, the
ERP signal was then recovered by taking the ensemble average over
all aligned trials. However, it is commonly accepted the ERP wave-
form has inter-trial and inter-subject variability, and thus information
is lost by taking the average [1].

Single-trial analysis aims at estimating the ERP in a single trial.
There is an extensive literature on single-trial analysis, refer to [2] for
a review. This type of analysis has applications in the study of certain
conditions, such as schizophrenia [3] or fatigue [2]. The detection of
single-trial ERPs can also be used in brain-computer-interfaces [4].
Estimating an ERP at single-trial level is a challenging task, primar-
ily due to the poor signal-to-noise ratio (SNR). Secondly, there is lit-
tle understanding of the noise generating process. Many studies use
i.i.d. noise (e.g., [5], [6]), which fails to capture the smooth nature
of EEG data. A better understanding of the probabilistic properties
of noise could lead to better algorithms. Added to the poor SNR
and lack of good models, there is also a lack of ground truth. The
typical ERP shape is difficult to identify in most single trials by vi-
sual inspection. However, there is sometimes some side information
that can be used to validate a model. In this paper, we work with
ERPs from the motor cortex associated to the movement of a hand,

and it is a known fact that this type of ERP will closely precede the
movement.

Our goal is to find an ERP in a sequence of EEG data. Equiva-
lently, if we call τ the time of ocurrence of the ERP in a single trial,
our goal is to estimate τ . We start by building a parametric model
of the ERP, which in our case has two components: a small positive
peak followed by a large negative one. Since we are only interested
in τ , we marginalise out the other parameters by using a Bayesian
framework. We draw samples from the posterior distribution of τ
using MCMC in order to later compute its maximum-a-posteriori
(MAP) estimate. Different noise covariance structures are tested,
and it is shown how it affects the estimates significantly. We validate
our findings using visual validation and hand-labelling.

2. RELATED WORK

Our work presented here is novel from a methodology and model
point of view. Many works use parametric models to estimate the
amplitudes and latencies of the ERP components. However, most
works assume their trials are aligned and have a reduced search space
for τ (e.g. [2], [4], [7]). This can be too restrictive an assumption if
the goal is to build a detector or for validation purposes. In [4] they
allow for a latency variation of 200 ms, while in [5] they allow for
latency variation of 60 ms and 120 ms for two components respec-
tively. In [7], they assume τ has small variation around its average
value. These methods can only work on aligned trials where the la-
tency variability is very small. Assuming the latency variability to
be small is not necessarily appropriate for all types of ERP. Further-
more, by reducing the search space of τ , there is a risk of overfit-
ting, i.e. fitting the model to spurious ongoing EEG waveforms. In
our case, our seach space is 740 ms and we do not assume our tri-
als are aligned. However, we assume the ERP is present within the
trial. Our detector could have a wealth of applications, such as doing
ERP parameter estimation under high latency variation, estimating
latency variation [8, 9, 10], performing latency correction in a BCI
[11] and offering numerical validation techniques.

In [5], they also work within a Bayesian framework but their
model differs from ours in many aspects. Since they compute point
estimates using MAP estimation with uniform priors over all pa-
rameters, their method is not different from a maximum-likelihood
method. In this work, we use non-uniform prior distributions over
some parameters and we compute the MAP estimates using MCMC.
Additionally, our model is hierarchical which makes it more robust
to the choice of the prior parameters. The method in [5] constrains
the mean of all latencies to be zero, and can therefore only work
on aligned trials, which is an assumption we do not make. Further-
more, they use i.i.d. noise, whereas we explore different types of
correlated noise structures. The use of Gaussian process kernels to
model the noise is a relatively unexplored technique for single-trial
ERP analysis. This work extends previous work in [12], where the
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noise parameters were found by maximum-likelihood and the signal
parameters had discrete empirical priors. In this paper, all param-
eters have continuous priors, and there is an additional hierarchical
level that was not present in [12].

3. THE PARAMETRIC MODEL

We use bold font for vectors, upper case for matrices and lower case
for scalars. We use the notation τ−i to denote the set of variables
(τ1, . . . , τi−1, τi+1, . . . , τN ). Similarly, we denote the set of values
(τ1, . . . , τN ) by τ1:N . Our data matrix is made out ofN single trials
of dimension T , i.e. Y = [yT1 , . . . ,y

T
N ]. The i-th single trial is

given by

yi = µi + ni, ni ∼ N (0,K(θ))

where i ∈ [1 . . . N ], µi is the mean of the trial and ni is the back-
ground noise. We model the background noise as being Gaussian
distributed with covariance matrix K(θ), which we will describe
later. Single trials are independent of each other so that p(Y ) =∏
i p(yi). The mean of the trial is given by

µi = Fiai,

where ai = [ai,1 ai,2]T is a 2-by-1 vector and Fi is a T -by-2 ma-
trix such that Fi = [fi,1 fi,2]. The T -by-1 vectors fi,1 and fi,2 are
parameterised by τi and ∆i

(fi,1)j = exp

(
− (j − (τi + ∆i))

2

2c2

)
(fi,2)j = − exp

(
− (j − τi)2

2c2

)
,

where j ∈ [1 . . . T ] and the values (fi,1)j and (fi,2)j are the j-th en-
tries of vectors fi,1 and fi,2 respectively. In other words, the mean of
the trial is the sum of two squared exponential functions represented
by fi,1 and fi,2 with amplitudes ai,1 and ai,2 respectively. Note
that the amplitude parameters are positive. This parametric model
is commonly used for ERPs (i.e. [6]). An example of a single trial
with the fitted model is shown in Figure 2.
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Fig. 1. Hierarchical Bayesian model for the single-trial ERP. Ran-
dom variables are shown by circles, deterministic variables by dia-
monds and observations by rectangles.

The goal of this paper is to find τi for each trial i. We work
in a fully Bayesian framework where all the parameters in the

model have prior distributions. We can reformulate our goal as
finding the maximum-a-posteriori estimate of τi, i.e. τMAP

i =
argmaxτi p(τi|Y ). When setting the prior distributions over the
model parameters, we assume that we do not have any prior knowl-
edge or information about τi. These are the prior distributions we
have selected

τi ∼ U [τmin, τmax]

∆i ∼ U [∆min,∆max]

ai ∼ N (µa,Σa)

µa ∼ N (µ0,Σa/κ0)

Σa ∼ IW(Σ0, ν0),

where N denotes the multivariate normal distribution, U denotes
the uniform distribution and IW the inverse Wishart distribution.
We chose the multivariate normal distribution for ai after looking at
the distribution of amplitudes on some labelled trials. We used prior
conjugates for µa and Σa to make some computations tractable. The
hierarchical Bayesian model structure is shown in Figure 1. The
first-level hyperparameters τmin, τmax, ∆min, ∆max are fixed so
as to have broad distributions for τi and ∆i and encompass all plau-
sible values. The second-level hyperparameters µ0, κ0, Σ0, ν0 are
also fixed after using visual inspection and testing different values.
The noise parameters are denoted by θ, they are discussed in the
following section.
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Fig. 2. Example of a single trial with fitted template.

3.1. The noise structure

In this paper, we test different parametric forms for the covariance
K(θ). Our model is a Gaussian process with stationary covariance
matrix. Thus, we can build the covariance matrix using a covariance
function defined on the separation between two points r = |i − j|,
i.e. Kij = k(i, j) = k(r) [13]. These are the covariance functions
we tested on our data:

• i.i.d. noise: kI(r) = σ2
fδr , where δr is Kronecker’s delta,

• Matérn covariances: kν= 1
2

, kν= 3
2

and kν= 5
2

,

• squared exponential: kSE(r) = σ2
f exp

(
− r

2

l2

)
.

The definition of the Matérn covariances can be found in [12]. It
is usual to choose ν to be half-integers as it gives a simple form to
the covariance. When ν → ∞, the Matérn covariance becomes the
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squared exponential, and so the higher ν, the smoother the noise.
Each of these covariance functions has different sets of parameters:
θ = σ2

f for the i.i.d. covariance and θ = [σ2
f , l] for the others. For

both parameters, we choose non-informative priors: the scale param-
eter l has an improper uniform prior, and the variance has Jeffrey’s
prior, i.e. p(σ2

f ) ∝ 1
σ2
f
1[0,∞](σ

2
f ).

3.2. The Gibbs sampler

The posterior distribution p(τi|Y ) cannot be computed analyti-
cally; a Gibbs sampler is used instead to sample from it. We start
by sampling from the joint posterior distribution of all parameters
p(τ1:N ,a1:N ,∆1:N ,µa,Σa, θ|Y ), the marginalisation can be done
by keeping only the samples from τi. The first step of the Gibbs
sampler is to sample from the conditional posterior

p(ai,∆i, τi|Y,µa,Σa,a−i,∆−i, τ−i, θ)
= p(ai|∆i, τi,yi,µa,Σa, θ)p(∆i, τi|yi,µa,Σa, θ).

We can sample ai directly from its conditional distribution, but
not ∆i and τi. We thus introduce a Metropolis-Hastings (MH) step
where we propose new values (a∗i , τ

∗
i ,∆

∗
i ) from a proposal distribu-

tion q(∆∗i , τ
∗
i ,a
∗
i |∆i, τi,ai) = q(∆∗i )

q(τ∗i |τi)p(ai|∆i, τi,yi,µa,Σa, θ) and compute the acceptance
ratio:

p(a∗i ,∆
∗
i , τ
∗
i |yi,µa,Σa, θ)q(ai,∆i, τi|a∗i ,∆∗i , τ∗i )

p(ai,∆i, τi|yi,µa,Σa, θ)q(a∗i ,∆∗i , τ∗i |ai,∆i, τi)

=
p(yi|∆∗i , τ∗i ,µa,Σa, θ)q(τi,∆i|τ∗i ,∆∗i )
p(yi|∆i, τi,µa,Σa, θ)q(τ

∗
i ,∆

∗
i |τi,∆i)

.

To compute this acceptance ratio, it is necessary to solve the inte-
gral

∫
p(yi,ai|∆i, τi,µa,Σa, θ) dai, which can be done analyti-

cally. We propose values for ∆i from its prior uniform distribution.
For the parameter τi, we propose from a mixture of Gaussians cen-
tered at the Ni local minima {µ1, . . . , µNi} of the i-th trial, i.e.
q(τ∗i |τi) = αq0(τ∗i ) + (1− α)q1(τ∗i |τi), where α ∈ [0, 1] and

q0(τ∗i ) =
1

Ni

Ni∑
j=1

g(τ∗i |µj , σ2
0)

q1(τ∗i |τi) = g(τ∗i |τi, σ2
1).

In the above expression, g(x|µ, σ2) is a Gaussian distribution with
mean µ and variance σ2 evaluated at x. In others words, we sample
from a mixture of Gaussians centered at the local minima α% of the
time, the rest of the time we sample from a Gaussian distribution
centered at the previous sampled value, i.e. random walk compo-
nent. Figure 3 illustrates the proposal distribution q(τ∗1 |τ1 = 278).
The proposal distribution is very peaked around the previous sam-
pled value. In this step, the Gibbs sampler iterates through all the
parameters by increasing i from 1 to N .

The second step of the Gibbs sampler is to sample from
p(µa,Σa|Y,a1:N ,∆1:N , τ1:N , θ) = p(µa,Σa|a1:N ). Since we
selected conjugate priors, this distribution is a multivariate normal-
inverse Wishart with known parameters. The acceptance ratio is 1
for this step.

Finally, the last step is to sample from the posterior of the noise
parameters p(θ|Y,a1:N ,∆1:N , τ1:N ,µa,Σa). We cannot sample
directly from this distribution, so we use a MH-step again where
we propose values from q(θ∗|θ) and compute an acceptance ratio
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Fig. 3. Proposal distribution for trial 1 and current estimate of τ1 =
278.

for the move. In this case, we choose the same proposal as the prior
distribution. The acceptance ratio is

p(Y |θ∗,a1:N , τ1:N ,∆1:N )

p(Y |θ,a1:N , τ1:N ,∆1:N )
.

4. THE DATA

The data set was acquired by an Electrical Geodesics system with a
129-channel Hydro-Cell Net at the department of Experiment Psy-
chology in Cambridge, same dataset as [14]. In the experiment, the
participants were asked a series of binary questions, and they needed
to press a button with either their right or their left hand in order to
answer. The time of the button press is the response time, we denote
it tR. This motor action is closely preceded by a movement-related
ERP generated in the motor cortex, also called ‘lateralized readiness
potential’, which is defined as the difference between two channels.
In our case, we worked on the difference between two motor cortex
channels C3 and C4. The sampling frequency was 500 Hz. The pre-
processing steps consisted of a bandpass filter with passband [0.01
Hz - 30 Hz] and a notch filter to remove the mains effect. Refer to
[14] for details about the experiment or the ERP. We had 3 partici-
pants with a total of 142 trials. Every trial was 500 samples long (1
second). In order to allow for the signal to be fully contained inside
the search space, we set τmin = 100 and τmax = 470. Thus, our
search space was 740 ms.

As mentioned in the introduction, there is no ground truth for
this type of data. However, there is some side information that can
be used to validate the results. In this case, it is a known fact that the
motor ERP occurs soon before the motor response time. We aligned
our trials with respect to the response time that we fixed at tR = 370.
We thus expected to have a distribution of τ to be centered at approx.
δ = 100 ms before the response time (see Supplementary Figure 3 in
[14]), and therefore centered at sample 320. We took two approaches
to validate our results. Firstly, we used this a-priori knowledge to
compare the distribution of τMAP

1:N using different covariances, and
using trials containing only noise. The other validation approach
was to hand-label the trials, i.e. τ l1:N . For this, we used the prior
knowledge that tR−τ < δ, and looked for an identifiable peak. The
second validation technique is less reliable than the first one, but it
allows for the computation of scores for each model: root-mean-
square error (RMSE) and detection accuracy. We deemed we had
correctly detected τi if |τi − τ li | < 5.
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5. THE RESULTS

A well-known issue with Gaussian process covariances is the nu-
merical instability for large T . In our case T = 500, we found the
matrix to be badly conditioned. A way to circumvent this is to add
some i.i.d. noise in the diagonal of the matrix. The final covariance
is: K = σ2

nI + KGP . There are some heuristics to set the vari-
ance σ2

n, but in our case the detection was only influenced by the
ratio σ2

f/σ
2
n. We wanted to keep σ2

n low enough to take advantage
of the correlation structure of the GP matrix as much as possible.
We thus set σ2

n = 0.01, which was small given that the signal was
usually in the range [−1, 1]. We found that a sample size of 10,000
with no thinning and a burn-in period of 100 gave the desired per-
formance. For the kI and kν=1/2 covariance matrices, a burn-in
period of 500 was used since convergence was slower. We used the
following parameter values for the prior and proposal distributions:
µ0 = [0.5 0.8]T , [∆min ∆max] = [8 45],Σ0 = [m1 m2],m1 =
[0.09 0.14]T ,m2 = [0.14 0.21]T , c = 10, κ0 = 10, ν0 = 5, σ0 =
5, σ1 = 1, α = 0.8. The parameters µ0, ∆min, ∆max, Σ0 and c
were selected by visual inspection of the signals, the remaining pa-
rameters of the priors were selected in a way to allow for flexibility,
and the proposal parameters were selected heuristically to improve
convergence properties of the chain. We show the posterior p(µa|Y )
using the kSE model in Figure 4. This posterior holds information
about the single-trial amplitudes of both components. We do not
show the posterior of the other parameters due to space constraints.
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Fig. 4. Kernel density estimation of the prior and posterior distribu-
tions of µa using the kSE kernel.

We used the hand-labels τ l1:N described earlier to compute a
RMSE in samples and percentage of correct detections by compar-
ing τMAP

1:N to τ l1:N for the different covariance matrices (see Table
1). The covariances with smooth noise properties gave the best per-
formance. The i.i.d. covariance did not give the worst performance,
it was better than the Matérn covariances with low parameter ν. We
also compared the performance of each covariance to a random guess
for each τi uniformly distributed among the local minima of trial i
between 100 and 470. The performance of the kSE model was sig-
nificantly better than the other models, its detection score was almost
9x better than the random guess. This covariance function yielded
a posterior of µa with maxima that were much lower than the max-
ima of the prior distributions, as shown in Figure 4. We also tried
a proposal for τi which was a uniform distribution over the local
minima in yi, this proposal was faster and achieved almost the same
performance as the one reported here.

Model RMSE Correct detections (%)
Random guess 115.60 7.05

kν=1/2 108.65 31.69
kν=3/2 98.10 40.85
kI 88.62 44.37

kν=5/2 89.10 50.00
kSE 74.79 61.97

Table 1. Comparison of noise models.

Looking at the distribution of the estimates τMAP
1:N is a form of

visual validation. Figure 5 shows the distributions of τMAP
1:N with the

kSE and kν=1/2 models, as well as the distribution of τMAP
1:N using

kSE in a set of trials that do not have the ERP and are therefore con-
sidered noise. We see that the distribution of τMAP

1:N obtained from
the kSE model has a significant peak centered at 320, as expected.
In the other cases, the distribution looks more uniform, making it
difficult to infer anything from it. This confirms that we are not fit-
ting the parametric ERP model to spurious EEG noise, and that the
kSE model picks up a signal indeed.
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Fig. 5. Kernel-smoothed distributions of τMAP
1:N with kSE , kν=1/2

and with kSE on trials containing only noise.

6. CONCLUSION

We have shown how the ERP can be successfully detected in single-
trial EEG data. By using a hierarchical Bayesian model, we could
capture the inter-trial variability of the ERP signal, while incorpo-
rating prior knowledge we might have about the signal such as its
mean amplitude. We assumed no prior knowledge on the time of
occurrence of the ERP. The estimates were validated by comparing
them to hand-labels, and by inspecting their distribution visually.
The hand-labels supported the fact that the kSE covariance structure
is the most appropriate for the detection of the signal. The distribu-
tion of the estimates obtained with the kSE covariance had a clear
peak at approx. 100 ms before the motor action, which is an expected
property of the ERP. This work shows that a parametric model can be
used to find the ERP signal in a single trial, but that careful thought
needs to be put into the modelling of the noise. We could extend the
work presented here by introducing new smooth covariances (au-
toregressive, periodic covariance function), and by using multiple
channels.
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