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ABSTRACT 
 
Kalman filters have been used to decode neural signals and 
estimate hand kinematics in many studies. However, most prior 
work assumes a linear system model, an assumption that is 
almost certainly violated by neural systems. In this paper, we 
show that adding nonlinearities to the decoding algorithm 
improves the accuracy of tracking hand movements using neural 
signal acquired via a 32-channel micro-electrocorticographic 
(µECoG) grid placed over the arm and hand representations in 
the motor cortex. Experimental comparisons indicate that a 
Kalman filter with a fifth order polynomial generative model 
relating the hand kinematics signals to the neural signals 
improved the mean-square tracking performance in the hand 
movements over a conventional Kalman filter employing a 
linear system model. This finding is in accord with the current 
neurophysiological understanding of the decoded signals. 
 

Index Terms— Neural decoding, Brain-Computer 
Interface, Nonlinear Kalman Filter 
 

1. INTRODUCTION 
 

Brain-Computer Interfaces (BCIs) can be used to restore 
movement and communication for people with tetraplegia, brain 
stroke, or other infirmities.  One of the biggest challenges facing 
BCIs is the formulation of a model for predicting effector 
kinematics from neural activity.  Due perhaps to the complexity 
of the underlying biomechanical system for generating 
movement, there are a wide variety of such models in the 
literature.  Some of these models are nonlinear [1-4], but most 
are linear, and many of these linear models fall into broad 
categories of Wiener filters [5-6], population vector [7-8], 
probabilistic methods [9-11], and recursive Bayesian decoders 
such as Kalman filters [12-16]. 

The Kalman framework, which is one solution to the 
problem of using noisy measurements to update the state of an 
entity with known dynamics, is well suited to the BCI problem, 
which uses information extracted from neural signals to update 
the state of a prosthetic effector.  Many BCI implementations in 

the literature have therefore used Kalman filters [12-16].  By 
incorporating prior knowledge about the effector’s dynamical 
constraints and balancing the influence of the effector prior and 
neural innovations based on their relative certainty, Kalman 
filters offer a systematic way to deal with error.  Furthermore, 
Kalman filters can be implemented in a computationally 
efficient manner, making them appropriate for real-time 
operation [14].   

A number of improvements have been proposed to adapt 
Kalman filters to specific BCI design problems.  Gilja et al. 
proposed several changes to the way in which the Kalman filter 
is parameterized to explicitly recognize the presence of a user 
interacting with the system [15].  Mulliken et al. incorporated 
goal information in the Kalman filter model [16].  Others have 
noted that the linearity assumption of the standard Kalman filter 
model may not optimally describe the data, and several 
nonlinear techniques have been explored including generalized 
linear models, generalized additive models, neural networks, 
and global Laplacian models [1-3].  Many of these models 
demonstrated better coverage of the data, but suffered from high 
computational cost.  An unscented Kalman filter (UKF) which 
incorporates a quadratic function of neural tuning and 10th-
order autoregressive modeling of the hand trajectories was 
proposed in [4]. This system demonstrated better signal-to-noise 
ratio in the outputs with the nonlinear model and kinematic 
memory than with a standard Kalman filter [4]. However, the 
system in [4] still employed a linear model to relate the neural 
signals to the hand movements. 

In addition to model selection, BCIs may also be 
differentiated by the area of the brain from which the neural 
signals are derived (e.g., motor cortex [1-15] or parietal cortex 
[16]), the scope of the recorded neural signal (e.g. neuronal 
spikes [1-16] or field potentials [17-19]), and by the particular 
kinematic variables used in the model to produce effector 
movement (e.g. position or velocity [13,15]).  The combined set 
of factors including neural model, brain area, neural signal, and 
kinematic variables represent some of the most important 
decisions to be made for BCI design. 

This work explores offline decoding of hand trajectories 
from surface local field potentials recorded over hand and arm 
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area of motor cortex.  Unlike the work in [4] that incorporates a 
quadratic state update model for hand kinematics, the approach 
of this paper incorporates nonlinearities of the neural signals in 
the generative model. A computationally efficient realization of 
the system was developed by subsampling the neural and hand 
movement data prior to implementing the Kalman filter. 
Analysis results presented in Section 3 will demonstrate that 
these modifications of the Kalman filter resulted in substantial 
improvement in the tracking capability of the BCI system.  
 

 
2. A NONLINEAR KALMAN FILTER FOR BCI 

 
Let 𝒛!   ∈   ℝ! represents a C-element vector containing the 

neural signals acquired at time tk from C different neural 
channels. Let 𝐙! = 𝒛!, 𝒛!,… , 𝐳! ! represent the data matrix 
containing the neural signals acquired till time k.  Similarly, let 
𝒙!   ∈   ℝ!! be a 4p-element vector containing the most recent p 
instances of the hand position (x and y locations) and hand 
movement velocity (x and y directions) at time k and let  
𝐗! = 𝒙!,𝒙!,… ,𝒙! ! be the data matrix containing the hand 
kinematic state history from time 1 through k.   

The linear generative model that relates the neural signal 
𝐳!  to the state vector 𝐱! is given by  

 
 𝒛! = 𝐇𝒙! + 𝒒! (1) 

 
where 𝒒! is the modeling error vector that is assumed to be 
Gaussian with zero mean value and covariance matrix Q and H 
is the coefficient matrix that relates the state vector to the neural 
data, respectively.  

We assume that the temporal evolution of the state vector is 
linear, and is given by  

 
𝒙!!! = 𝐀𝒙! + 𝒘!                                                                                    (2) 

 
where 𝒘! is the prediction error vector that is also assumed to 
be Gaussian with zero mean value and covariance matrix W, 
and A is the predictor matrix for the state vector. We note that 
the above equation represents a pth order autoregressive model 
for the evolution of the state vector. 

Despite assumptions of linearity in most BCIs, linear 
relationships are often insufficient to describe neural tuning 
models [4].  Linear models have worked well since they are 
usually more computationally efficient in implementation, and 
they may be more stable with nonstationary inputs.  However, 
nonlinear models may describe neural systems better and 
therefore produce more accurate control of the effector [20,21].  
We propose adding nonlinearities to the system in such a way as 
to preserve the benefits of the linear Kalman filter while 
providing better control.  We do this by augmenting the neural 
signal vector to include higher order powers of the signals as 

 
𝒛! = [𝑧!,!, 𝑧!,!! − 𝐸 𝑧!,!! ,…,   
                                        𝑧!,!! − 𝐸 𝑧!,!! ,… , 𝑧!,!! − 𝐸 𝑧!,!! ]             (3)  

Table 1: Kalman filter update equations. 
 
A priori state update: 

 
𝐱!! = 𝐀𝐱!!!     

A priori error 
covariance matrix: 

 
𝑷!! = 𝑨𝑷!!!𝑨! +𝑾 

 
Kalman gain:  

 
𝐊! = 𝐏!!𝐇! 𝐇𝐏!!𝐇! + 𝐐 !!     

 
State update:  

 
𝐱! = 𝐱!! + 𝐊! 𝐳! − 𝐇𝐱!!      

Error covariance 
matrix: 

 
𝐏! = I − 𝐊!𝐇 𝐏!! 

 
where E{.} denotes the statistical expectation of the variable 
within the parenthesis. We have assumed above that the neural 
signals have zero mean value, or that the mean values have been 
removed from the neural signals also. The mean values of the 
higher-order terms can be calculated using temporal averaging 
and removed to create the augmented neural signal vector. 

Assuming knowledge of the coefficient matrices H and A, 
and the covariance matrices Q and W, we can implement the 
Kalman filter for the above model as shown in Table 1 [22].  
 
2.1. Training the Kalman filter 

 
Given a training sequence of neural signals and the 
corresponding hand locations and velocities, the matrixes A and 
H may be easily calculated using a least-squares approach. 
Assuming data spanning time samples from 1 through M, the 
estimates are given by 

 
𝐀 = 𝐗!!!! 𝐗!!! !!  𝐗!!!! 𝐗!                                                   4   

and 
𝐇 = 𝐗!! 𝐗! !!  𝐗!! 𝐙!                                                                              (5) 

 
where the hats denote estimated values, and an appropriate 
number of zeros have been padded to 𝐗!!! to make it 
compatible for multiplication with 𝐗! in (4). After these 
coefficient matrices are estimated, we can estimate the 
covariance matrices from the training set as 
 

𝑾 =
1

𝑀 − 1
𝑿! − 𝑿!!!𝐀

!
(𝑿! − 𝑿!!!𝐀)                (6) 

and 

𝐐 =
1
M
(𝐙! − 𝐗!𝐇)!(𝐙! − 𝐗!𝐇)                                                      (7) 

 
In practical realizations of the Kalman filter in BCI 

applications, we will first train the system to estimate the 
parameters that cannot be updated online as shown in (4)-(7), 
and then implement the system in Table 1 with the estimated 
parameters substituting for their true values in the table.  
 
2.2. Channel Selection 
 
It is thought that cortical columns approximately several 
hundred microns in diameter form the basic computational unit 
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of the cerebral cortex. We, therefore, suspected that there may 
be redundant information in neural signals sampled at a spatial 
frequency of 1mm – not all channels were needed to perform an 
accurate decoding. Mutual information analysis was used to 
investigate this idea. 

The mutual information between a neural signal 𝐳! and the 
hand signals x and y is defined as  

 

𝐼! 𝒛! ,𝒙,𝒚 = 𝑓𝒛,𝒙,𝒚 𝑧, 𝑥, 𝑦 log
𝑓𝒛,𝒙,𝒚 𝑧, 𝑥, 𝑦

𝑓𝒛 𝑧 𝑓𝒙 𝑥 𝑓𝒚 𝑦
𝑑𝑧𝑑𝑥𝑑𝑦 

      (8) 
where the functions f represent the probability density functions 
of the subscripted variables. Ideally, to pick N different neural 
channels, we should compute the joint mutual information of all 
possible combinations of N channels with the hand signals, and 
pick the subset of neural channels with the highest mutual 
information with the hand signals.  

Because of the computational complexity and the large data 
requirement associated with estimating the joint mutual 
information of a large number of variables, we used a sub-
optimal approach in which the joint mutual information of 
signals from three neural channels and the two hand signals 
were first estimated for all possible triplets of neural channels. 
These triplets of neural channels were arranged in descending 
order of the corresponding mutual information values, and the 
first N channels that appeared in the ordered list was employed 
in the Kalman filter. Even though sub-optimal because the 
method does not take into account the possible redundancies 
between the individual channels, this approach resulted in the 
selection of a subset of the channels that gave acceptable 
performance.  

 
3. RESULTS 

 
3.1. Data Acquisition 
 
The data used in this paper were collected from a patient 
undergoing ECoG recordings prior to the surgical treatment of 
epilepsy [17-19].  The patient was implanted with two 16-
channel nonpenetrating micro-wire arrays that consisted of a 40 
micron wire embedded in a silicone substrate with 1 mm 
interelectrode spacing (PMT Corporation, Chanhassen, MN). 
The arrays were placed in the epipial space underneath a 
standard clinical electrocorticographic (ECoG) grid. One of the 
arrays was placed over arm and hand representations in motor 
cortex as confirmed with intraoperative somatosensory evoked 
potential (SSEP) monitoring. Both arrays were referenced to 
low-impedance wires placed in the epidural space. Thirty-two 
channels of neural data and two channels with X and Y hand 
position data recorded using a sampling rate of 30 kHz. 

The patient performed a simple reaching task using a mouse 
on a draftsman tablet (20 cm x 20 cm). The patient moved the 
mouse from the bottom center of the table to the upper left or 
upper right corner of the table. In addition to the position data, 
we also calculated the velocity as the first order derivative of the 
position signals. 

Since hand movements are low frequency signals (it is 
practically difficult to move the hands at rates faster than 4 Hz.), 
our system preprocessed both the hand and neural signals with a 
lowpass filter with 10 Hz. cut off frequency and then sub-
sampled the resulting signals to implement a computationally 
efficient update strategy for the nonlinear Kalman filter at the 
rate of 60 samples/s. 
 
3.2 Performance Evaluation 
 
For all the analysis presented in this paper, the data were broken 
into seven parts. The Kalman filter was trained on the first part, 
and then tested on the other six. During the training process, the 
coefficient matrices A and H, along with the covariance 
matrices W and Q were computed as in (4)-(7). The remainder 
of the calculations were made as in the Kalman filter iterations 
of Table 1 even for the training block. For the other six blocks, 
the matrices A, H, W and Q were kept frozen as estimated from 
the training block and the remainder of the iterations were 
performed as in Table 1. In most cases, the results shown here 
are averages computed over blocks 2 through 7 used as the test 
data.  

The first set of analysis was performed to evaluate the best 
delay to introduce into the neural signals before they are fed to 
the Kalman filter. For this, we used a linear generative model as 
well as a nonlinear 5th order generative model along with a 5th 
order autoregressive state update model, and implemented a 
generative model of the form  

 
 𝒛!!! = 𝐇𝒙! + 𝒒! (9) 

 
and estimated the mean-square estimation error for the hand 
movement signal for different values of the delay value r. The 
results are plotted in Figure 1. They were obtained using all 32 
neural channels. The results indicate that (1) the nonlinear 
generative model outperforms the linear model; and (2) there is 
an “optimum” value of uniform delay (all channels are delayed  
 

 
 
Fig. 1: Root-mean-square estimation error as a function of the delay in 
the neural signal 
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by the same number of samples) for which the Kalman filter 
performs the best in the least-squares sense. Both these 
observations are in accord with our current neurophysiological 
understanding of the decoded signals. 

The optimal delay observed in the above results is somewhat 
higher than the typical delay values of a few hundred 
milliseconds between neural signals and the hand signals 
reported in the literature. This variation from prior results may 
be due to several reasons. First, the measurements were 
performed soon after the implantation prior to complete healing 
of the injuries from the surgery. This as well as the effects of 
medication may have slowed the response time. A fraction of 
the observed delay may also be caused by latencies in the data 
acquisition hardware. 

Figure 2 displays the effect of adding nonlinearities in the 
generative model in the Kalman filter. Plotted here are the 
correlation coefficients between the estimated hand movements 
and the actual measurements of the hand movements as a 
function of the order of nonlinearity for an autoregressive state 
update model and an autoregressive state update model of order 
5 for nonlinearity orders 1 through 5. We can see from the 
results that the nonlinearities in the model improves the quality 
of estimates substantially. Furthermore, additional memory in 
the autoregressive model improves the performance of the 
system. However, this improvement is less for higher-order 
nonlinearities.  

 
Fig. 2: Correlation coefficient of estimated and measured hand position 
signals as a function of the order of nonlinearity in the generative 
model. Two cases, corresponding to a first-order autoregressive model 
for state update and an update model of order 5 are shown.  

In the last set of analysis, we selected 15 and 10 channels 
based on mutual information analysis to estimate the hand 
movements. The correlation coefficients of the estimated hand 
movements with the measured values for 32, 15 and 10 
channels, a 5th order nonlinear generative model, and a 5th order 
autoregressive state update model is shown in Figure 3. 

Plots of the hand movements (only in x-direction) obtained 
using 32, 15 and 10 neural channels are shown in Figure 4. It 
appears from the results in Figures 3 and 4 that our approach to 
selecting the neural channels using sub-optimal mutual 
information analysis is able to identify the channels that 

contribute most to the estimation of hand movements. In 
particular, there is little loss of information when the number of 
channels is reduced to 15 from the original 32.  

 
4. CONCLUDING REMARKS 

 
This study shows that the performance of brain-computer 

interface systems for tracking hand movements using neural 
signals acquired via micro-electrocorticographic grids can be 
substantially improved if nonlinearities involving neural signals 
are added to the generative model. Furthermore, at 1 mm 
spacing of the electrode, there is sufficient redundancy in the 
neural signals that not all neural channels are needed to perform 
efficient kinematic hand decoding from brain signals. 
Additional research involving optimal selection of the nonlinear 
models, computationally efficient, mutual information-based, 
optimal channel selection, channel-specific delay estimation and 
algorithms to blindly update the “frozen” parameters of the 
system are currently underway. 

 

 
Figure 3. Correlation coefficients of the estimated hand movements for 
reduced number of neural channels.  

 
Figure 4. Comparison of the estimated hand movements using 
nonlinear models with 32, 15 and 10 channels. Only movements along 
the x-direction are shown.    
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