
APPROXIMATE LEAST SQUARES

Michael Lunglmayr† , Christoph Unterrieder†, Mario Huemer⋆

† Klagenfurt University, Embedded Systems and Signal Processing, 9020 Klagenfurt, Austria
⋆ Johannes Kepler University Linz, Institute of Signal Processing, 4040 Linz, Austria

michael.lunglmayr@aau.at

ABSTRACT
We present a novel iterative algorithm for approximating the
linear least squares solution with low complexity. After a mo-
tivation of the algorithm we discuss the algorithm’s properties
including its complexity, and we present theoretical results as
well as simulation based performance results. We describe
the analysis of its convergence behavior and show that in the
noise free case the algorithm converges to the least squares
solution.

Index Terms— least squares, approximation, iterative al-
gorithm, complexity.

1. INTRODUCTION

The linear least squares (LS) approach is an important and ex-
tensively studied problem in many areas of signal processing
with many practical applications from localization [1] to bat-
tery state estimation [2]. In applying the linear LS approach
for a vector parameter x, we assume a signal model Hx dis-
turbed by noise n such that

y = Hx + n, (1)

where H is a known m × p observation matrix (m ≥ p) with
full rank p, y is a known m × 1 vector (typically from mea-
surements), x is an unknown p × 1 parameter vector that is
to be estimated and n is an m × 1 noise vector. For the LS
approach, the statistical properties of n need not to be known.
For simplicity we only consider real vectors and matrices in
this work, however, the presented concepts can easily be ex-
tended for complex vectors and matrices. The vector x̂LS that
minimizes the cost function

J(x̂) =
m

∑
i=1

(yi − hT
i x̂)2

= (y −Hx̂)T (y −Hx̂) (2)

is the solution to the LS problem. Here hT
i is the ith row of H

and yi is the ith element of y, respectively. The LS solution
is given by

x̂LS = H†y, (3)

with H† = (HTH)−1HT as the pseudoinverse of H. Numer-
ically more stable algorithms avoiding explicitly calculating

H†, e.g. based on the QR decomposition, can for example be
found in [3]. A solution as in (3) is often called batch solution
in literature [4].

For real time applications one usually wants to avoid the
calculation of the batch solution due to its computational
complexity and its large memory requirements. Alterna-
tives are sequential algorithms such as the Sequential Least
Squares (SLS) algorithm – described in the next section – or
gradient based approaches such as the iterative LS (ILS) [3]
algorithm. The latter algorithm is based on the steepest de-
scent approach and iteratively calculates

x̂(k) = x̂(k−1)
− µ∇J(x̂(k−1)

), (4)

for iteration k. Here ∇J(x̂(k−1)) = −2HTy + 2HTHx̂(k−1)

is the gradient of J(x̂) at x̂(k−1). For k →∞, x̂(k) converges
to x̂LS given that the iteration step width µ fulfills 0 < µ <

1/(2s2
1(H)) [3], with s1(H) as the largest singular value of

H. Alternatively, (4) can be written as

x̂(k) = x̂(k−1)
+ µ

m

∑
i=1

2hi(yi − hT
i x̂(k−1)

). (5)

Analyzing the complexity of this approach one can see that
2pm+pmultiplications are required per iteration. In addition,
every iteration of ILS requires the availability of all elements
of the measurement vector y.

Based on the principle of ILS we propose a novel iterative
way of approximating the least squares solution that we call
approximate least squares (ALS). As we will show, the com-
plexity of this approach is significantly lower than for ILS and
it requires only one measurement value yi per iteration.

When analyzing (5), the gradient can be interpreted as a
sum of the partial gradients

di(x̂
(k−1)

) = −2hi(yi − hT
i x̂(k−1)

) (6)

as schematically depicted in Fig. 1. The idea of ALS is to use
only one of these partial gradients per iteration. Instead of
moving a small step (due to µ) in a steepest descent way in the
negative direction of the gradient as done by ILS, ALS moves
a small step in the negative direction of only a partial gradient.
This has the advantage of a lower complexity, but – as we will

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4711

partial gradients:

x(k-1)^

 - J(x(k-1))^

 -di(x
(k-1))^

x^

J(x(k-1))^J(x)^

Fig. 1. Gradient and partial gradients of ILS.

discuss below – also has the disadvantage of a higher noise
sensitivity. Following this general idea, two issues have to
be addressed. First, the number of iterations of the algorithm
to achieve satisfying performance results may be higher than
the number of rows of H. Second, the noise sensitivity has
to be reduced. To cope with the first issue we suggest to re-
use the rows hT

i of H in a cyclic manner. Let the operator
“ ⌝” be defined such that for a positive natural number i: i⌝ =
((i−1) mod m)+1. From this it follows that i⌝ ∈ {1, . . . ,m}.
For better readability we do not write the dependence of this
operator onm in the operator’s symbol. For ALS,m is always
the number of rows of the matrix H. An ALS iteration is now
defined as

x̂(k) = x̂(k−1)
+ µ2hk⌝(yk⌝ − hT

k⌝x̂
(k−1)

). (7)

That means for ALS that if k reaches m, for the following
iterations the first rows of H and the first elements of y are
used again in a cyclic manner. We will now address the
second issue, namely the noise sensitivity. As we will discuss
below, if n = 0 then x̂(k) converges to x̂LS as k →∞. For the
usual case n ≠ 0, a noise dependent error remains. This error
can be greatly reduced by introducing a simple averaging
process in the last m iterations. A formal justification for this
averaging will be given within the error analysis in Sect. 3.
Summarizing, this leads to an overall formulation of the
algorithm:
Algorithm: ALS

x̂ALS = 0
x̂(0) = 0
for k = 1 . . .N do

x̂(k) = x̂(k−1) + µ2hk⌝(yk⌝ − hT
k⌝x̂

(k−1))
if k > N −m then

x̂ALS = x̂ALS + x̂(k)

end if
end for
x̂ALS = 1

m
x̂ALS

Here N denotes the number of iterations of the algorithm and

x̂ALS is the approximation of x̂LS that is output by the algo-
rithm. When analyzing the above algorithm, and only count-
ing the multiplications, one can see that (2p + 1)N overall
multiplications are required to perform the algorithm. Com-
pared to ILS a factor of around m fewer multiplications per
iteration are required. Although more iterations are usually
needed for ALS its overall complexity is significantly lower
as will be demonstrated in Sect. 5. This decrease in complex-
ity is bought with only a small degradation in performance.
An additional advantage of ALS is that per iteration only one
value yi and only one row hT

i of H are required. This signif-
icantly reduces the required number of other operations (ad-
ditions, memory accesses,...) and also simplifies the memory
management as well as the architecture when thinking of a
hardware implementation.

2. RELATION TO PRIOR WORK

ALS not only has similarities to ILS but also to the SLS ap-
proach [4]. For SLS the update equation

x̂(k) = x̂(k−1)
+Kk(yk − hT

k x̂(k−1)
) (8)

is sequentially calculated m times, requiring an update of the
gain vector Kk at every iteration. Although, the algorithm
can deliver x̂LS after m iterations, the update of Kk requires
significant effort, including the multiplication of full matrices
(although symmetry can be exploited to reduce the complex-
ity). ALS uses the same update equation (usually more than
m times), with the simplified choice Kk = 2µhk⌝.

Update equation (8) is arithmetically similar to the Least
Mean Squares (LMS) filter update step [5]. However, the
LMS update step uses a random (filter input) vector and one
sample of a desired signal as input, whereas the ALS update
step only uses one sample yi of the measurement vector y as
input. Also the original formulation of the LMS algorithm
for the so-called ADALINE [6, 7] approach was based on a
random input vector, providing an adaptive approach with a
potentially unlimited set of input patterns. Instead of the ran-
dom input vector in the LMS case the deterministic and fixed
rows of the observation matrix H are used in the update equa-
tion of the ALS. The row vectors hT

i and the measurement
values yi are cyclically re-used. Another difference is the av-
eraging at the last m iterations which is unique for the ALS
algorithm. And finally, the convergence behavior of ALS can
be described in a completely deterministic manner, whereas
the convergence of the LMS is usually only described in the
mean. Anyhow, the authors are confident that some ideas im-
proving LMS – e.g. adjusting the step size [8, 9] – might be
also used to further improve the performance of ALS.

4712

3. CONVERGENCE BEHAVIOR

By rewriting (7) as

x̂(k) = (I − 2µhk⌝h
T
k⌝)x̂

(k−1)
+ 2µhk⌝yk⌝ (9)

and defining the error vector of ALS e(k) = x̂(k) − x together
with Mk⌝ = (I − 2µhk⌝hT

k⌝) one gets

x(k) = (I − 2µhk⌝h
T
k⌝)(x + e(k−1)

) + 2µhk⌝yk⌝ (10)

= x − 2µhk⌝h
T
k⌝x +Mk⌝e

(k−1)
+ 2µhk⌝(h

T
k⌝x + nk⌝).

(11)

Here nk⌝ is the k⌝th element of n. Subtracting x left and right
from the equation leads to

e(k) = Mk⌝e
(k−1)

+ 2µhk⌝nk⌝. (12)

When defining ∆k⌝ = 2µhk⌝nk⌝ one can write the above
equation as

e(k) =
k

∏
i=1

Mi⌝e
(0)
+

+∆k⌝ +M(k−1)⌝(∆(k−2)⌝ + . . . + (M2∆1) . . .), (13)

with e(0) as the initial error. Here the product of the matrices
is defined as∏k

i=1 Mi⌝ = Mk⌝M(k−1)⌝ . . .M1. When analyz-
ing the above equation one can see that the error at iteration k
depends on the initial error e(0) represented in e(k) by the part
e
(k)
0 = ∏

k
i=1 Mi⌝e(0) as well as on an error term introduced

by noise represented by e
(k)
∆ = ∆k⌝+M(k−1)⌝(∆(k−2)⌝+. . .+

(M2∆1) . . .). With this one can write

e(k) = e
(k)
0 + e

(k)
∆ . (14)

If no noise is present then

e(k) = e
(k)
0 =

k

∏
i=1

Mi⌝e
(0). (15)

When choosing k as an integer multiple of m and defining
M =∏

m
i=1 Mi one obtains

e(k) =
k

∏
i=1

Mi⌝e
(0)

= M
k
m e(0). (16)

In [10] we show that for the choice

0 < µ ≤
1

2 max
i=1...m

∥hT
i ∥2

2

, (17)

the matrix M has a 2-norm smaller than one (although the
proof is not complicated it is omitted here due to length con-
straints). This implies that all eigenvalues of M have abso-
lute values smaller than one. From this it directly follows that

e
(k)
0 converges to zero as k → ∞, i.e. x̂ALS = x̂LS = x.

This means that if no noise is present x̂(k) converges to x.
However if n ≠ 0 a persistent error e

(k)
∆ remains. In [10]

we will give a more detailed analysis of e
(k)
∆ , showing that

e(k) features almost a periodic behavior from an index kp on,
wherefrom e

(k)
0 can be considered negligible. This particular

index kp, which can also be specified analytically, can be used
to define N e.g. as N = kp +m.

By analyzing the ALS algorithm one can see the impor-
tance of the averaging in the finalm iterations. As we already
noted e(k) is highly dependent on the noise for large k (e(k)0

vanishes with increasing k). The averaging over the last x̂(k)

vectors yields

eALS = x̂ALS − x = (
1

m

N

∑
k=N−m+1

x̂(k)) − x (18)

=
1

m
(

N

∑
k=N−m+1

x̂(k) −mx) (19)

=
1

m

N

∑
k=N−m+1

(x̂(k) − x) (20)

=
1

m

N

∑
k=N−m+1

e(k). (21)

That means by averaging over the lastm vectors x̂(k) an aver-
aging over the corresponding error vectors occurs. Since for
a practical application it is highly unlikely that all these er-
ror vectors have equal length and point in the same direction
(in this case averaging would have no effect) this averaging
step typically significantly reduces the error norm. The aver-
aging only has to be done once, it therefore presents only a
minor complexity increase (overall only pm additions and p
multiplications with the constant 1/m).

4. SIMULATION RESULTS

We first show simulation results of a typical example of least
squares estimation: the estimation of amplitudes of sine sig-
nals in noise. For this demonstration example we chose H
as a 100 × 8 matrix with elements Hn,k = cos(2πnTsfk).
The frequencies fk are not necessarily integer multiples of a
base frequency. The elements of the noise vector have been
sampled indepentently from a normal distribution with zero
mean and a standard deviation σ = 10−2. The amplitudes x
have been estimated using 100 values, forming the vector y.
The step size for ILS was chosen as µ = 1/(2 s2

1(H)) and
for ALS as µ = 1/(2maxi=1...m∥hT

i ∥2
2). The estimation per-

formance has been measured by calculating the norm of the
difference vector between the true vector x and the estimated
vectors, respectively. Fig. 2 shows a typical simulation result
for ILS and ALS. In this figure, x̂ALS is the estimated pa-
rameter vector resulting after averaging the final m out of N

4713

0 100 200 300 400 500

10−2

10−1

100

15

Iteration

∥
x̂
(k
) −

x
∥
2
,∥

x̂
A
L
S
−

x
∥
2 x̂(k) of ALS

x̂(k) of ILS
x̂ALS

Fig. 2. Example of errors of ILS and ALS

vectors x̂(k), represented as a horizontal line for illustration
purposes. As one can see, ILS requires significantly less iter-
ations than ALS, but with aboutm = 100 times more multipli-
cations per iteration. The performance of ALS is only slightly
worse than the performance of ILS but ALS features a signifi-
cantly lower overall complexity. In this figure one can observe
an interesting behavior of ALS. After a certain number of iter-
ations the influence of e

(k)
0 becomes negligible. This reflects

in an oscillatory behavior of the error norm as can be seen in
Fig. 2. This oscillatory behavior comes from the fact that the
values yi are cyclically re-used in the N ALS iterations. As
a consequence also the noise values appear in a cyclic man-
ner. The averaging at the end of ALS is most effective if N is
chosen large enough so that the effects of e

(k)
0 are negligible.

Such a value for N can be found with simulations or based
on analytical results as will be presented in [10]. To provide
a fair comparison, in Fig. 3 we compared ALS, ILS and SLS
in terms of its error norms over the number of calculated mul-
tiplications. As one can see, if the error performance of ALS
is sufficient for a given application, its complexity is signifi-
cantly lower. In this example ILS needs about 3 times more
multiplications than ALS to obtain the same error norm. But
as stated above, this complexity analysis is only based on the
number of multiplications per iteration. Including other op-
erations (additions, memory accesses) would furthermore fa-
vor ALS. Due to page constraints we omitted a more detailed
complexity analysis in this paper. If the error performance of
ALS is not sufficient for a given application one could choose
a different approach, but extended variants of the ALS, e.g.
with adjusting µ during the iterations show promising first re-
sults towards further reducing the error norm. One can imme-
diately see the benefits of such an approach in (12) because
the noise dependent part of the error vector scales with µ, as
will be described in detail in [10]. But as extensive perfor-
mance simulations showed, ALS’ performance is on average
very close to the LS solution. Table. 1 shows performance

0 5000 10000 15000 20000 25000
10−3

10−1

101

103

105

Multiplications

∥
x̂
(k
) −

x
∥
2
,∥

x̂
A
L
S
−

x
∥
2 x̂(k) of ALS

x̂(k) of ILS
x̂(k) of SLS
x̂ALS

Fig. 3. Error norms over to the number of multiplications

results for random H matrices. The entries of these matrices
have been sampled from a uniform distribution out of [0,1].
Every simulation has been done for white Gaussian noise with
σ ∈ S = {10−5,10−4,10−3,10−2,10−1,1}, respectively, with
100 random matrices H per σ value and 100 random vectors
x (with random entries also sampled from a uniform distribu-
tion out of [0,1]) per H matrix. For every σ value the aver-
ages ∣∣x̂ALS − x∣∣2 and ∣∣x̂LS − x∣∣2 over the simulated results
have been calculated. Table. 1 shows the maximum relative
increase of ALS’ averaged error norm over the averaged er-
ror norms of LS, whereas the maximization has been done

over the elements of S: rmax = maxS (
∣∣x̂ALS−x∣∣2
∣∣x̂LS−x∣∣2

− 1). We

furthermore want to note that the relative increase of the aver-
aged error norms remained nearly constant over all simulated
σ values. As one can see in this table, the performance of
ALS shows on average only a minor degradation compared to
the LS solution.

dim(H) rmax dim(H) rmax

100 × 1 9.3% 1000 × 1 9.5%
100 × 2 9.7% 1000 × 2 9.5%
100 × 3 11.2% 1000 × 3 10.7%
100 × 5 11.3% 1000 × 5 12.8%
100 × 10 16% 1000 × 10 15.3%

Table 1. Performance results for random matrices.

5. CONCLUSION

We presented a novel algorithm for approximating the solu-
tion of the linear least squares problem. We discussed its con-
vergence behavior and demonstrated that the algorithm pro-
vides a close solution to the least squares solution with low
complexity. The presented algorithm shows promising poten-
tial for further extension in theory and implementation as well
for use in a variety of applications.

4714

6. REFERENCES

[1] Choi, K.H., Ra, W.-S., Park, S.-Y.; Park, J.B., “Robust
Least Squares Approach to Passive Target Localization
Using Ultrasonic Receiver Array,” IEEE Transactions on
Industrial Electronics, vol. 61, no. 4, pp. 1993-2002, Apr.
2014.

[2] Unterrieder, C., Lunglmayr, M., Marsili, S., Huemer, M.,
“Battery state-of-charge estimation using polynomial en-
hanced prediction,” IET Electronics Letters, vol. 48, no.
21, pp. 1363-1365, Oct. 2012.

[3] Björck A., Numerical Methods for Least Squares Prob-
lems, SIAM, Philadelphia, 1996.

[4] Kay S. M., Fundamentals of Statistical Signal Process-
ing: Estimation Theory, Prentice Hall, 2005.

[5] Widrow B., Glover J. R., McCool J. M., Kaunitz J.,
Williams C. S., Heam R. H., Zeidler J. R., Dong E.,
Goodlin R. C., “Adaptive noise cancelling: Principles and
applications,” Proc. IEEE, vol. 63, pp. 1692-1716, Dec.
1975.

[6] Widrow, B., Hoff M. E., “Adaptive Switching Circuits,”
IRE WESCON Convention Record, Part 4, pp. 96-104,
1960.

[7] Widrow, B., “Thinking about thinking: the discovery of
the LMS algorithm,” IEEE Signal Processing Magazine,
vol. 22, no. 1, pp. 100-106, Jan. 2005.

[8] Harris R., Chabries D., Bishop P., “A variable step (VS)
adaptive filter algorithm,” IEEE Trans. Acoust. Speech
Signal Processing, vol. ASSP-34, pp. 309-316, Apr.
1986.

[9] Bhotto, M.Z.A., Antoniou, A., “A Family of Shrinkage
Adaptive-Filtering Algorithms,” IEEE Transactions on
Signal Processing, vol. 61, no. 7, pp. 1689-1697, Apr.
2013.

[10] M. Lunglmayr, C. Unterrieder, M. Huemer, “Approx-
imate Least Squares: Convergence and Performance
Analysis,” in preparation.

4715

