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ABSTRACT

This paper investigates theoretical limits on time delay es-
timation performance when the received waveform is un-
known. Considering that the Cramér-Rao bound for the time
delay estimation error cannot be derived in this case, the an-
alytical expression of the Ziv-Zakai bound is provided and
discussed.

Index Terms— Ziv-Zakai bound, Time delay estimation,
Time of arrival, Energy detector, Synchronization

1. INTRODUCTION

Time delay estimation, also referred to as epoch estimation
or time-of-arrival (TOA) estimation, is a classical signal pro-
cessing problem with many applications such as synchroniza-
tion, radar/sonar target distance estimate, and wireless local-
ization [1–5].

Classical TOA estimators rely on coherent correlation,
that is, they assume local knowledge of the received sig-
nal shape. However their design and implementation is not
always practical when the signal shape is unknown [4]. More-
over, correlation-based receivers might result in high com-
plexity implementations, especially when large bandwidth
signals are employed. For these reasons, TOA estimators
based on energy measurements have been proposed [4, 6],
but there is still a no complete understanding of their perfor-
mance bound. To this purpose, the Cramér-Rao bound (CRB)
is the well-known approach adopted in estimation theory to
obtain a performance benchmark [3, 7]. Unfortunately, when
no prior knowledge on the received signal is available, the
CRB cannot be derived because the regularity conditions on
the involved signal probability density function (p.d.f.) are
not satisfied [7].

The Ziv-Zakai bound (ZZB) [8], with its improved ver-
sions such as the Bellini-Tartara bound [9], does not require
stringent regularity constraints on the p.d.f. and accounts for
both threshold effect in the low and moderate signal-to-noise
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ratio (SNR) regions, and a-priori information of the parameter
to be estimated, and hence it can be applied to a wide range
of SNRs [2, 10–12]. ZZBs for known signals or assuming
statistical knowledge of the channel at the receiver have been
widely investigated in the literature (e.g., [9, 12–14]). Dif-
ferently, at the most of authors’ knowledge, no bounds have
appeared for the case of unknown deterministic signals.

This paper derives the ZZB on the mean squared error
(MSE) associated with the TOA estimation of unknown de-
terministic signals. Numerical results show that this bound
is very tight for all the range of SNR with the actual perfor-
mance of energy-based estimators, differently from the CRB
and ZZB derived in the case of known signal that are quite
loose when compared with the estimator performance.

2. SIGNAL MODEL

We consider a received signal given by

r(t) = s(t− τ) + n(t) (1)

where s(t) is a time-limited low-pass waveform with duration
Ts. We assume s(t) to be band-limited at level ε with band-
width W , with W indicating the smallest value for which∫

|f |>W
|S(f)|2 df < ε (2)

where S(f) is the Fourier transform of s(t), and the energy
ε lying outside the frequency range is less than the smallest
amount we are able to detect in the real world [15]. Param-
eter τ is the unknown TOA of the received signal to be esti-
mated, assumed uniformly distributed in the interval [0, Ta],
and n(t) is additive white Gaussian noise (AWGN) with zero
mean and two-sided power spectral density (PSD) N0/2 in
the band of interest.1 The goal is to obtain the estimate τ̂ of τ
by observing r(t) in the interval [0, Tob], with Tob > Ta +Ts.

We assume s(t) to be an unknown deterministic signal,
for which its shape is totally unknown [16]. In the absence
of additional hypothesis on s(t) it is not possible to identify

1We consider the presence of a zonal filter that removes all the noise com-
ponents outside W .
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uniquely the TOA because the starting and ending instants of
s(t) would not be defined. Therefore the only assumption we
consider is that s(t) is zero outside the interval [0, Ts].

For further convenience, we make use of orthonormal se-
ries representations of signals in [0, Tob] using a suitable com-
plete orthonormal basis {Φm(t)}Mm=1 [7]. Specifically we can
write

r(t) =

M∑
m=1

rm Φm(t), n(t) =

M∑
m=1

nm Φm(t) (3)

for 0 ≤ t ≤ Tob with M = b2WTobc+ 1 [17]. Adopt-
ing the classical Karhunen-Loéve expansion [7] we have that
nm = cm σn, with σ2

n = N0

2 , and where coefficients {cm}
are independent zero mean Gaussian random variables (RVs)
with unitary variance. According to the previous series ex-
pansions, signals r(t) and n(t) are fully represented by the
coefficients vectors r = [r1, r2, . . . , rM ]T ∈ RM , and n =
[n1, n2, . . . , nM ]T ∈ RM , respectively. Signal s(t), instead,
is by definition time-limited in 0 ≤ t ≤ Ts, therefore it
can be conveniently expanded, using an orthonormal basis
{Ψn(t)}Nn=1, as

s(t) =

N∑
n=1

sn Ψn(t) , 0 ≤ t ≤ Ts (4)

where N = b2WTsc+1. Since Ts < Tob, the dimensionality
of the vector of coefficients s = [s1, s2, . . . , sN ]T ∈ RN is
less than that of r, that is, N < M . Expression (1) can be
written equivalently in the form

r =H(τ) s + n = y + n (5)

with H(τ) ∈ RM×N being the transform matrix from ba-
sis {Ψn(t)} to basis {Φm(t)} depending on τ , and vector
y ∈ RM obeying the linear subspace model y = H(τ) s.
In particular, vector y lies in a N -dimensional subspace of
RM denoted with 〈H(τ)〉,with N < M . In the following
given the vector x ∈ RM , containing the series expansion co-
efficients of a generic signal x(t), the orthogonal projection
of x onto 〈H(τ)〉 will be denoted by PH(τ) x, where PH(τ)

is the orthogonal projection matrix (or projector) PH(τ) =

H(τ)
(
H(τ)T

H(τ)
)−1

H(τ)T
. It can be shown that

xTPH(τ)x =

∫ τ+Ts

τ

x2(t) dt (6)

which represents the energy of x(t) in the interval [τ, τ +Ts].
The conditional p.d.f. of r is given by

p {r|τ} =
1(√

πN0

)M exp

{
− 1

N0

∥∥∥r−H(τ) s
∥∥∥2} . (7)

3. THE ZZB FOR UNKNOWN DETERMINISTIC
SIGNALS

When τ is uniformly distributed in [0, Ta], the ZZB is given
by [9, 18]

ZZB =
1

Ta

∫ Ta

0

z (Ta − z)Pmin (z) dz (8)

where Pmin (z) is the probability of error corresponding to
the optimum decision rule based on the likelihood ratio test
(LRT)

Λ(r) =
p {r|τ}

p {r|τ + z}
H1

≷
H2

1 . (9)

for testing the two equally probable hypotheses

H1 : r(t) = s(t− τ) + n(t) or r = H(τ) s + n (10)

H2 : r(t) = s(t− τ − z) + n(t) or r = H(τ+z) s + n .

In the following the detector and its probability of error
will be derived in order to calculate the ZZB in (8).

3.1. Detector Design

Due to the assumption of unknown deterministic signal, the
test (9) is composite since unknown series expansion coeffi-
cients s are present. In the absence of any statistical charac-
terization of the unknown coefficients s, a practical and usual
approach is to design the detector performing the generalized
likelihood ratio test (GLRT) [7]. Unfortunately we cannot
claim the optimality of the GLRT, then the corresponding
ZZB expression will not result, in general, a lower bound.
However it is well known that the GLRT is asymptotically op-
timum, so the derived expression can be considered a lower
bound in the high SNR region [19]. The optimality for cer-
tain classes of estimators is under investigation and will be
addressed in a following up paper.

The log-GLRT is obtained by replacing the unknown pa-
rameters s by their maximum likelihood (ML) estimates ŝ1
and ŝ2, respectively, under hypothesisH1 andH2 [7], that is

`(r) = ln
p {r|τ, ŝ1}

p {r|τ + z, ŝ2}
H1

≷
H2

0 (11)

where the ML estimates ŝ1 and ŝ2 are given by

ŝ1 =
(
H(τ)T

H(τ)
)−1

H(τ)T
r (12a)

ŝ2 =
(
H(τ+z)T

H(τ+z)
)−1

H(τ+z)T
r . (12b)

As a consequence, from (7), the statistic `(r) in (11) becomes

`(r)=
∥∥∥r−H(τ+z) ŝ2

∥∥∥2− ∥∥∥r−H(τ) ŝ1

∥∥∥2 = ‖n̄2‖2− ‖n̄1‖2
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where n̄1 = r − H(τ) ŝ1 = (IM − PH(τ)) r and n̄2 =
r − H(τ+z) ŝ2 = (IM − PH(τ+z)) r, with IM the M th or-
der identity matrix. The GLRT results `(r) = rT PH(τ) r −
rT PH(τ+z) r. According to (6) it is

`(r) =

∫ τ+Ts

τ

r2(t) dt−
∫ τ+z+Ts

τ+z

r2(t) dt
H1

≷
H2

0 . (13)

3.2. Detector Performance

The GLRT performance is given by the probability of error

Pmin (z) =
1

2
P {`(r|H1) < 0}+

1

2
P {`(r|H2) > 0} (14)

where `(r|H) denotes the GLRT (13) specified in the case
when H true. Considering that, with H1 true, s(t − τ) is by
definition zero outside the interval [τ, τ + Ts], it is

`(r|H1)

=

{∫ τ+Ts

τ
(s(t−τ)+n(t))2dt−

∫ τ+z+Ts

τ+z
n2(t)dt , z≥Ts∫ τ+z

τ
(s(t−τ)+n(t))2dt−

∫ τ+z+Ts

τ+Ts
n2(t)dt, 0≤z<Ts.

An analogue expression can be written when H2 true. We
now proceed with the evaluation of Pmin (z) in (14), related to
the detector (13). In the following we consider separately the
case z ≥ Ts and 0 ≤ z < Ts. Moreover, as will be detailed in
the derivation, it is necessary to further specify the behavior
of (13) for small values of z, that is, for z < ξ = 1/2W .

1) Evaluation of Pmin (z) for z ≥ Ts

For further convenience we define the RVs

Y1 =
2

N0

∫ τ+Ts

τ

(s(t−τ)+n(t))2 dt=

N∑
n=1

(√
2

N0
sn+c1,n

)2

Y2 =
2

N0

∫ τ+z+Ts

τ+z

n2(t) dt =

N∑
n=1

c22,n

Y3 =
2

N0

∫ τ+z+Ts

τ+z

(s(t− τ − z) + n(t))2 dt

=

N∑
n=1

(√
2

N0
sn + c2,n

)2

Y4 =
2

N0

∫ τ+Ts

τ

n2(t) dt =

N∑
n=1

c21,n (15)

where {c1,n}, {c2,n} are related, respectively, to the series ex-
pansion coefficients of n(t+τ) and n(t+τ+z) in t ∈ [0, Ts].
According to the signal model considered, {c1,n}, {c2,n} are
statistically independent Gaussian RVs with zero mean and
unit variance. As a consequence Y1 and Y3 are non-central
Chi-squared distributed RVs, whereas Y2 and Y4 are central
Chi-squared distributed RVs, each having N degrees of free-
dom. The non-centrality parameter µ of Y1 and Y3 is given by

µ = 2SNR, where SNR = 1
N0

∑N
n=1 s

2
n = 1

N0

∫ Ts

0
s2(t) dt .

In addition Y1, Y2, Y3 and Y4 do not depend on z, then the
probability of error Pmin (z) results independent on z. Mak-
ing use of (15) and thanks to the statistical symmetry, we can
express Pmin(z) in (14) for z ≥ Ts as

P (I)
min = P {Y1 < Y2} = PY (µ/2, dN/2e) (16)

where

PY(γ, q)=
exp(−γ/2)

2q

q−1∑
i=0

(γ/2)i

i!

q−1∑
j=i

(j + q − 1)!

2j(j − i)!(q + i− 1)!

whose derivation is left to the journal extended version of this
work.

2) Evaluation of Pmin (z) for ξ ≤ z < Ts

We now define the RVs

Y1 =
2

N0

∫ τ+z

τ

(s(t−τ)+n(t))2 dt=

p(z)∑
m=1

(√
2

N0
η1,m+c1,m

)2

Y2 =
2

N0

∫ τ+z+Ts

τ+Ts

n2(t) dt =

p(z)∑
m=1

c22,m

Y3 =
2

N0

∫ τ+z+Ts

τ+Ts

(s(t− τ − z) + n(t))2 dt

=

p(z)∑
m=1

(√
2

N0
η2,m + c2,m

)2

Y4 =
2

N0

∫ τ+z

τ

n2(t) dt =

p(z)∑
m=1

c21,m (17)

where p(z) = b2W zc + 1, {c1,m}, {c2,m} are related, re-
spectively, to the series expansion coefficients of n(t+τ) and
n(t + τ + Ts) in t ∈ [0, z], and η1,m and η2,m are the series
expansion coefficients of s(t) in t ∈ [0, z] and t ∈ [Ts−z, Ts],
respectively. Again, {c1,m}, {c2,m} are statistically indepen-
dent Gaussian RVs with unit variance. As a consequence Y1
and Y3 are non-central Chi-squared distributed RVs, whereas
Y2 and Y4 are central Chi-squared distributed RVs, each hav-
ing p(z) degrees of freedom. The non-centrality parameters
µ1(z) and µ2(z) of Y1 and Y3 are given by µ1(z) = 2γ1(z)
and µ2(z) = 2γ2(z), where

γ1(z) =
1

N0

p(z)∑
m=1

η21,m =
1

N0

∫ z

0

s2(t) dt (18a)

γ2(z) =
1

N0

p(z)∑
m=1

η22,m =
1

N0

∫ Ts

Ts−z
s2(t) dt (18b)

now both dependent on z. Note that (18a) and (18b) repre-
sent the SNR captured in the intervals [0, z] and [Ts − z, Ts],
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respectively. The probability of error for ξ ≤ z < Ts results

P (II)
min (z)=

1

2
P {Y1 < Y2}+

1

2
P {Y3 < Y4} (19)

=
1

2
PY (γ1(z), dp(z)/2e)+

1

2
PY (γ2(z), dp(z)/2e) .

3) Evaluation of Pmin (z) for z < ξ

When z < ξ, a low-pass signal is represented with one only
coefficient. In this case we exploit approximations reported in
[20], leading to

∫ z
0
n2(t) dt ≈ N0W z c21. As a consequence,

we define the RVs

Y1 =
2

N0

∫ τ+z

τ

(s(t−τ)+n(t))2dt=
2

N0

(
η1,1+

√
N0Wz c1,1

)2
Y2 =

2

N0

∫ τ+z+Ts

τ+Ts

n2(t) dt = 2W z c22,1

Y3 =
2

N0

∫ τ+z+Ts

τ+Ts

(s(t− τ − z) + n(t))2 dt

=
2

N0

(
η2,1 +

√
N0W z c2,1

)2
Y4 =

2

N0

∫ τ+z

τ

n2(t) dt = 2W z c21,1 (20)

where c1,1 and c2,1 are related to the series expansion coeffi-
cients of n(t+ τ) and n(t+ τ +Ts) in t ∈ [0, z], and η1,1 and
η2,1 are the series expansion coefficients of s(t) in t ∈ [0, z]
and t ∈ [Ts− z, Ts], respectively. Again, c1,1 and c2,1 are sta-
tistically independent Gaussian RVs with unit variance. Now√
Y1 and

√
Y3 are Gaussian RVs, with mean, respectively,√

µ1(z) =
√

2γ1(z) and
√
µ2(z) =

√
2γ2(z), where γ1(z)

and γ2(z) are given by (18a) and (18b), and variance 2W z.
Differently,

√
Y2 and

√
Y4 are Gaussian RVs with zero mean

and variance 2W z. Therefore the probability of error for
z < ξ results

P (III)
min (z) =

1

2
P
{√

Y1 <
√
Y2

}
+

1

2
P
{√

Y3 <
√
Y4

}
=

1

2
Q

(√
γ1(z)

2W z

)
+

1

2
Q

(√
γ2(z)

2W z

)
(21)

where Q(·) is the Gaussian Q-function.
By substituting (16), (19), and (21) in (8), we obtain the

ZZB on TOA estimation MSE of unknown deterministic sig-
nals, that is

ZZB =
1

Ta

∫ 1/2W

0

z(Ta − z)P (III)
min (z) dz (22)

+
1

Ta

∫ Ts

1/2W

z(Ta − z)P (II)
min (z) dz +

(
T 2
a

6
− T

2
s

2
+
T 3
s

3Ta

)
P (I)

min .
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Fig. 1. CRB and ZZB for known and unknown signals. Dashed
lines denote the performance of the MF estimator (known signal),
and the energy-based estimator (unknown signal).

4. NUMERICAL RESULTS

We consider a root raised cosine (RRC) received pulse with
pulse width parameter Tw = 3.2 ns and roll-off ν = 0.6. This
signal is exactly band-limited, so its time-limited version, ob-
tained by cutting its main two lobes, is considered. Figure 1
shows the root-mean-squared error (RMSE) predicted by the
CRB [7] and the ZZB [13] in the case of known signals, and
the derived ZZB (22) valid for unknown received signal. A
receiver bandwidth W = 8/Tw is considered. For compari-
son, the performance of the ML estimator, that is the matched
filter (MF) estimator in the case of known signals, and the
performance of a classical energy-based TOA estimator [6]

τ̂=argmax
τ

ln p {r|τ, s= ŝ}=argmax
τ

∫ τ+Ts

τ

r2(t) dt (23)

in case of unknown signals, are depicted in the figure.
The presence of the threshold effect is evident from the

ZZB. On the other hand this behavior cannot be observed
in the CRB. For high SNR the estimation error of the MF
approaches that predicted by the CRB and the ZZB for known
signals [13]. The CRB and ZZB obtained considering the
signals as they were known are very loose, also in the high
SNR region, in comparison with the performance of energy-
based estimator (23), which does not require any knowledge
on the signal. In this case the new expression (22) provides a
very tight and more realistic bound for all the range of SNR.

5. CONCLUSION

We have presented the ZZB on time delay estimation error
of unknown deterministic signals. The derived ZZB fore-
sees the presence of different regions, clearly showing the
SNRs threshold values of the ambiguity region. The proposed
new bound results very tight with the actual performance of
energy-based TOA estimators, usually adopted in the pres-
ence of unknown signals.
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