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ABSTRACT

Location-awareness is essential for many wireless network

applications in both civil and military sectors. In this pa-

per, we determine the localization accuracy of narrowband

localization systems in which each mobile agent is equipped

with an antenna array. Due to non-coherent estimators, the

phases of the received signals can only be exploited for

angle-of-arrival (AOA) estimation but not time-of-arrival

(TOA). Based on such estimators, we derive the fundamental

localization accuracy in terms of the squared position error

bound (SPEB) in far-field harsh multipath environments.

Moreover, we characterize the effects of the geometry of

anchors and array antennas on the localization accuracy,

yielding the criteria for optimal array design and network

deployment. Our analysis exploits all the TOA and AOA

information in the received waveform for localization using

narrowband array-based systems, and the resulting SPEB

serves as a fundamental limit for such systems.

Index Terms— Antenna arrays, Geometric property, Lo-

calization, TOA/AOA, Wireless networks

1. INTRODUCTION

Localization services are essential in many civil and mili-

tary applications, and currently are mainly provided by the

global positioning system (GPS), with effectiveness severely

degraded in harsh environments, e.g. in buildings, caves,

and urban canyons [1], [2]. The wireless network is a well-

performed alternative to handle the degradation, where locali-

zation is accomplished by the radio communications between

nodes. Specifically, by processing the received signal, some

signal metrics can be extracted for localization. Common-

ly used metrics include time-of-arrival (TOA) [1, 2], time-

difference-of-arrival (TDOA) [3, 4], angle-of-arrival (AOA)

[2, 5, 6], and received signal strength (RSS) [7].

These localization methodologies all extract some metrics

from the received waveforms, i.e. distance (TOA) or direc-

tion (AOA), and then use trilateration and triangulation for

localization [5, 8]. However, since the extracted metrics may

discard useful information for localization, e.g., correlations

between metrics, we adopt an alternative methodology which

utilizes the received waveforms directly to derive a fundamen-

tal bound [9, 10].

In practical systems, the signal propagation will encounter

the problem of noise, fading, shadowing, multipath (signal

reaches the receiver via multiple paths due to reflection and

penetration) and non-line-of-sight (NLOS, i.e. first arriving

signal does not travel on a line) [8], which imposes uncertain-

ties on localization. A commonly used lower bound for error

estimation is Cramér-Rao bound [5, 8–10], and it is shown in

[10] that joint processing between array antennas, i.e. AOA,

cannot provide additional information to existing TOA locali-

zation information in terms of Cramér-Rao bound for wide-
band systems. However, we will emphasize the contribution

of AOA information for narrowband systems in this paper.

The main contributions of this paper are listed as follows.

Firstly, we establish a RF signal model to characterize the

unavailability for using transmission wave in TOA. Next we

derive the equivalent Fisher information matrix (EFIM) for

agent’s position based on received waveforms and find that

it is a SNR-weighed sum of the measuring information from

each anchor-antenna pair which contains both distance and di-

rection information. In particular, AOA provides main infor-

mation for localization in narrowband cases. In addition, we

give a tightest SPEB by selecting a proper reference point in

the array and then study both impacts of anchors’ and array’s

geometric structure, in which we measure the geometry into

some simple metrics, and give criteria for the optimal geo-

metric design for array and anchors.

2. SYSTEM MODEL

Consider a 2-D wireless network with Nb anchors and one

agent with an array consisting of Na antennas. Anchors have

perfect knowledge of their positions, and agent attempts to es-

timate its position based on received waveforms from neigh-

boring anchors. Let pArray
k = (xArray

k , yArray
k ) ∈ R

2 be the

position of the k(k = 1, 2, · · · , Na)-th antenna in the array

to be estimated, and pj = (xj , yj) ∈ R
2 be the position of

anchor j(j ∈ Nb), where Nb = {1, 2, · · · , Nb} = NL ∪ NNL

denotes the set of all anchors, and anchors in NL and NNL pro-

vide line-of-sight (LOS) and NLOS signals respectively. Due

to the fixed relative position in the array, the array’s whole

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4701



Fig. 1: The array system rotated (with orientation ϕ) around the

predetermined reference point. There are Na antennas in the array,

each of which can be described by the distance dk and initial angle

(with no rotation) ϕk. Waveforms from one anchor are parallel to

each other with an identical angle φj , and Δk(φj−ϕ)−Δl(φj−ϕ)
is the wavepath difference between antenna k and antenna l.

status has 3 degrees of freedom, i.e. it can be characterized

by p = (x, y), the position of a reference point predetermined

relative to the array, and array orientation ϕ:

pArray
k = p+ dk

[
cos(ϕ+ ϕk)
sin(ϕ+ ϕk)

]
(1)

where dk is the distance between the reference point and k-th

antenna, ϕk is the initial angle when ϕ = 0 (see Fig.1).

Each anchor provides a known signal to each array an-

tenna, thus antenna k’s received waveform from anchor j is

[8, 11]

rjk(t) =

Ljk∑
l=1

α
(l)
jk e

√−1ω
(l)
jk (t−τ

(l)
jk )s(t− τ

(l)
jk ) + zjk(t) (2)

where s(t) is a known complex signal, α
(l)
jk and τ

(l)
jk are the

amplitude and delay, respectively, of the l-th path, and Ljk

is the number of multipath components (MPCs), zjk(t) re-

presents the complex observation noise modeled as additive

white Gaussian noise (AWGN) with two-side power spectral

density N0/2, ω
(l)
jk is the Doppler shift of the specular reflec-

tion (zero if l = 1), and t ∈ [0, Tob) is the observation interval.

We adopt the far-field assumption in our model, i.e. the

distance between the anchor and the agent is far enough to

obtain an identical anchor direction to all array antennas:

φj � φjk � tan−1 yj − y

xj − x
, ∀j ∈ Nb (3)

Hence, the time delay can be written as

τ
(l)
jk =

‖pj − p‖+ dk cos(φj − ϕ− ϕk) + b
(l)
jk

c

=: τj +
−Δk(φj − ϕ) + b

(l)
jk

c

(4)

where c is the propagation speed of the signal, ‖ · ‖ is the

Euclidean norm, and b
(l)
jk is the non-negative range bias of l-th

path (when l = 1, it is zero for LOS propagation, and is posi-

tive for NLOS). Additionally, we assume that array antennas

are quite close to each other to guarantee phase differences

between received signals in adjacent antennas less than 2π.

Our observation r consists of all received waveforms

rjk(t), and the parameter θ to be estimated is given by

θ �
[
pT (κ

(1)
11 )

T (κ
(2)
11 )

T · · · (κ
(LNbNa )

NbNa
)T

]T
(5)

κ
(l)
jk �

⎧⎪⎨
⎪⎩
[

Para(b
(1)
jk ) α

(1)
jk

]T
l = 1,[

b
(l)
jk ω

(l)
jk α

(l)
jk

]T
l > 1.

(6)

where Para(b
(1)
jk ) is 0 (empty) if j ∈ NL, and is b

(1)
jk elsewhere.

The CRB states that for any unbiased estimator p̂ for p,

Er[‖p̂− p‖2] ≥ tr{[J−1
θ ]2×2} = tr{J−1

e (p)} (7)

where Jθ is the Fisher information matrix (FIM) for the pa-

rameter vector θ based on observation r, J e(p) is the 2×2 E-

FIM obtained by Schur complement of Jθ [10], and the SPEB

is defined as the right-hand side expression in (7).

This methodology can derive SPEB for all signal types,

but in this paper, we restrict the signal in a RF signal form

and define its effective bandwidth β as follows:

s(t) = s0(t) exp(j2πfct) (8)

β �
[∫∞

−∞ f2|S0(f)|2df∫∞
−∞ |S0(f)|2df

] 1
2

(9)

where S0(f) is the Fourier transform for s0(t), and a small

β/fc indicates that the signal is narrowband.

The main purpose for establishing this model is that, in

practical TOA systems, the complex envelope s0(t) rather

than the entire signal s(t) is used in matched filtering process

[12]. Hence, the differentiation in the CRB for time delay τj
can only operate on signal envelope, while that for direction

φj can also operate on transmission frequency [13]. This

characterizes the fact that AOA can utilize the transmission

waveform but TOA cannot, and is the basis for our later

conclusion that AOA does improve the localization accuracy.

3. DERIVATION FOR EFIM

We call a RF signal relatively narrowband iff the spectrum

of baseband signal gathers around a certain frequency. Under

this assumption, the expression of EFIM is shown in Theorem

1, where all proofs are omitted for space limitations.

Theorem 1. When the orientation ϕ is known, the EFIM for
position is

J e(p) =
∑
j∈NL

Na∑
k=1

λjkqjkq
T
jk (10)
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(a) High β/fc: distance provides

main measuring information.

(b) Low β/fc: direction provides main

measuring information.

Fig. 2: Each anchor-antenna pair forms ranging information in two

orthogonal directions, where the major part differs with β/fc.

where

λjk �
8π2SNR

(1)
jk (1− χjk)

c2
(11)

qjk � βq(TOA)
j +

fc
Dj

(
∂

∂φj
Δk(φj − ϕ)

)
q(AOA)
j (12)

q(TOA)
j �

[
cosφj

sinφj

]
, q(AOA)

j �
[ − sinφj

cosφj

]
(13)

SNR
(l)
jk �

|α(l)
jk |2
N0

∫ ∞

−∞
|S0(f)|2df (14)

and SNR
(l)
jk is the signal-to-noise ratio, χjk ∈ [0, 1] is the

Path-Overlap Coefficient (POC) defined in [10], Dj is the
distance from anchor j to the reference point.

Theorem 1 indicates that the EFIM for position is a

weighed sum of measuring information (i.e. qjkq
T
jk) from

each anchor-antenna pair with intensity λjk, where high

intensity requires large SNR of first arriving signal, little

severity in path-overlap and LOS signals. In particular, NLOS

signals provide no information for localization, and χjk = 0
if the first arriving signal does not overlap with the others.

Note that qjk is a weighed sum of q(TOA)
j , the distance

(TOA) information with direction towards the anchor, and

q(AOA)
j , the direction (AOA) information with direction per-

pendicular to the anchor, with weights proportional to β and

fc, respectively. Hence, each anchor-antenna pair provides

measuring information in two orthogonal directions (see

Fig.2). Obviously, in narrowband cases (i.e. β � fc), AOA

provides the main information for localization.

4. GEOMETRIC PROPERTIES FOR SPEB

Since EFIM in (10) is affected by the selection of reference

point, a tighter SPEB can be obtained via a better reference

point selection. Generally, when localization is possible, we

can prove that there must exist a reference point yielding a

tightest SPEB. This point can be found explicitly based on the

far-field assumption that λj � λjk, ∀k in certain cases, such

as the TOA-only (AOA-only) cases where direction (distance)

information is small enough to be safely neglected.

Theorem 2. In both TOA-only and AOA-only cases, setting
the reference point to array coordinate center yields a tightest
SPEB, where the EFIM is J e(p) = Na

∑
j∈NL

λjIj , and

Ij �
{
β2q(TOA)

j (q(TOA)
j )T TOA-only

(fc/Dj)
2G(φj − ϕ)q(AOA)

j (q(AOA)
j )T AOA-only

(15)

and we call G(θ) as the array geometric factor (AGF):

G(θ) � 1

N2
a

∑
1≤k<l≤Na

[
d

dθ
(Δk(θ)−Δl(θ))

]2
(16)

To gain insights into array geometry, (15) indicates that a

larger AGF yields to a larger EFIM. In particular, G(θ) = 0
when Na = 1, thus direction information needs joint pro-

cessing among array antennas. Furthermore, the name AGF

is originated from the fact that G(θ) fully characterizes array

geometry, i.e. arrays with identical AGF perform identically

for localization.

We define the array diameter as the diameter of a smallest

circle which can cover the array. In addition, we call the array

with G(θ) invariant with θ and all antennas placed on a circle

centered at its coordinate center as uniformly circular oriented

array (UCOA). The following theorem indicates that, UCOA

has the best performance in terms of expected SPEB given

that the orientation ϕ is uniformly distributed in [0, 2π). This

is a guideline for designing the optimal array geometry when

expected SPEB is of our concern, e.g., we cannot adjust the

array orientation freely because it is fixed on the car roof.

Theorem 3. For fixed anchor locations and array diameter,

1

2π

∫ 2π

0

SPEB(p, ϕ)dϕ ≥ SPEBUCOA(p) (17)

where (p, ϕ) indicates array position p and orientation ϕ.

As for the assessment of the choice for anchor directions,

Theorem 4 below provides a useful measure.

Theorem 4. Denote ui � λi/D
2
i in AOA-only case provided

that the array is UCOA, or ui � λi in TOA-only case, then

SPEB ∝
⎡
⎣
∣∣∣∣∣
∑
i∈NL

ui

∣∣∣∣∣
2

−
∣∣∣∣∣
∑
i∈NL

ui exp(j2φi)

∣∣∣∣∣
2
⎤
⎦
−1

(18)

Theorem 4 indicates that |∑i∈NL
ui exp(j2φi)| is a good

measure for anchor geometry, and its small value is preferred

to enhance accuracy. Note that this measure is small when

anchor directions are weighed uniformly distributed, imply-

ing that it’s better to place anchors on diversified directions.
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Fig. 3: PEB contours with 5 anchors placed on a line and ULA with

Na = 6. β/fc = 0.01 and the array is parallel to anchors.
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Fig. 4: PEB contours with 5 anchors placed on a line and ULA with

Na = 6. β/fc = 0.01 and the array is perpendicular to anchors.

5. NUMERICAL RESULTS

We place five identical anchors on (−10k, 20)(−2 ≤ k ≤ 2)
and a uniformly linear array (ULA) with diameter 1 and six

antennas. All intensities in (11) are set to be unit for simpli-

city, and the relative bandwidth is β/fc = 0.01. Then Fig.3

and Fig.4 show the PEB (defined as root SPEB) contours with

arrays parallel and perpendicular to anchors respectively.

When array is parallel to anchors, the line on which

anchors are placed yields the lowest accuracy since AGF is

zero on it. Moreover, there are valleys on contour map, where

anchor geometry and distance are balanced for localization.

However, when array is perpendicular to anchors, there are

peaks on x = 10k(−2 ≤ k ≤ 2) for similar reasons on AGF,

but the line y = 20 no longer yields lowest accuracy.

Then we fix the array position on (0, 0) and change its

orientation from 0 (parallel to anchors) to π/2 (perpendicu-
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Fig. 5: PEB(ϕ) with fixed fc and p = (0, 0). Six curves correspond

to β/fc = 0.1, 0.02, 0.01, 0.002, 0.001, 0.0002, respectively.

lar to anchors) with different relative bandwidths (fc remains

constant). Fig.5 illustrates the relationship between PEB and

orientation. When β/fc is large, PEB is almost invariant with

orientation, which does not hold with small β/fc. In addi-

tion, ϕ = 0 yields the lowest PEB, which can be theoretically

explained by largest AGF obtained in this orientation. More-

over, when β decreases with fc fixed, the PEB rises but tends

to converge. This means AOA can provide information alone

when there is no available TOA information.

6. CONCLUSION

In this paper, we determined the localization accuracy of nar-

rowband array-based systems, where the TOA and AOA are

obtained by the received signal envelope and phases, respec-

tively. Under far-field conditions, we showed that the EFIM

for position is a weighed sum of measuring information from

each anchor-antenna pair, which can be decomposed into dis-

tance and direction parts with orthogonal information direc-

tion. Unlike localization systems using wideband antenna ar-

rays, the AOA provides the main information for localization

for the narrowband case. In addition, we derived the tightest

SPEB by choosing an optimal reference point and character-

ized the effects of array and anchor geometry. We found that

UCOA and anchors with weighed uniform direction distribu-

tions have the best performance in localization. These results

can be used as design guidelines for localization systems, and

serve as a basis for further research to relax the restrictions in

our work such as TOA(AOA)-only cases and UCOA.
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