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ABSTRACT
In statistical signal processing, hybrid parameter estimation
refers to the case where the parameters vector to estimate con-
tains both non-random and random parameters. In this com-
munication, we propose a new hybrid lower bound which, for
the first time, includes the Ziv-Zakaı̈ bound well known for its
tightness in the Bayesian context (random parameters only).
For the general case of parameterized mean model with Gaus-
sian noise, closed-form expressions of the proposed bound are
provided.

Index Terms— Parameter estimation, Ziv-Zakaı̈ bounds,
hybrid bounds, SNR threshold

1. INTRODUCTION

While Bayesian or non-Bayesian estimation techniques are now
widely used in statistical signal processing, the technique called hy-
brid estimation has been developped more recently and suffers from
a relative lack of results. Hybrid parameters refer to the case where
the parameters vector to estimate contains both non-random and
random parameters with a priori known probability density func-
tions (p.d.f.). Such framework is useful for several signal processing
applications, but it is not just the simple concatenation of Bayesian
and non-Bayesian techniques. Indeed, new estimator has to be de-
rived and one cannot use the Maximum Likelihood estimator for the
non-Bayesian part and the Maximum A Posteriori estimator for the
Bayesian part since the parameters can have a dependence. In the
same way, performance analysis methods of such hybrid estimators
has to be modifed accordingly.

Signal processing community generally use the Hybrid Cramér-
Rao Bound (HCRB) [1] for which some asymptotic achievability
results [2] are known. The HCRB, as well as the classical CRB,
is known to be simple to obtain for various problems (see Part III
of [3]) but suffers from some drawbacks. The main one is its only
asymptotic tightness in terms of number of samples or Signal-to-
Noise Ratio (SNR) leading to the incapability of predicting the so-
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called threshold effect (i.e. large errors) on estimator mean square
error in non-linear estimation problems. In order to fill this lack,
other hybrid lower bounds have already been proposed, e.g. the
Hybrid Barankin Bound (HBB) [4] or the Hybrid Barankin/Weiss-
Weinstein bound (HBWWB) [5]. In each case, the key idea is to
combine, in a tricky way, some lower bounds already known in the
Bayesian and non-Bayesian framework. So far this combination has
been done by resorting to the covariance inequality principle which
seems to be the cornerstone to establish such hybrid lower bounds
[5][6].

However, if we focus our attention on the Bayesian context (ran-
dom parameter only), two families of bounds are known in the liter-
ature: the Weiss-Weinstein family and the Ziv-Zakaı̈ family. If the
Weiss-Weinstein family is based on the covariance inequality prin-
ciple, leading to a natural extension to the hybrid context [5], the
Ziv-Zakaı̈ family [7] is based on a binary hypothesis testing prob-
lem not a priori linked to the covariance inequality principle. A
first consequence is the necessity to resort to simulation in order to
compare the tightness of these two families. A second one is the
non exhibition of an hybrid lower bound using one of the Ziv-Zakaı̈
family bounds. This paper aims to fill this lack since the Ziv-Zakaı̈
bounds are known to be very tight in the Bayesian context (see e.g.
[8][9][10]).

First, by adapting an idea suggested in [11, p. 38], we propose an
inequality between the hybrid MSE of a general class of estimators
and a quantity, closely related to the Ziv-Zakaı̈ bound. We prove that
this quantity is independent of the estimation scheme and is, conse-
quently a new lower bound. Moreover, any lower bound on the MSE
is a useful bound for signal processing problems if one are able to
obtain closed-form expression for a large set of estimation problems.
Therefore, in the second part of this paper we derive closed-form ex-
pressions of the proposed bound for the general case of Gaussian
observation model with parameterized mean. This model is widely
met in signal processing problems such that: spectral analysis [12],
array processing [13], digital communications [14], etc. Finally, a
comparison with the Maximum A Posteriori / Maximum Likelihood
Estimator (MAPMLE) and existing bounds is given in a frequency
estimation problem.
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2. RELATION TO PRIOR WORK

In the Bayesian context, the Weiss-Weinstein bound [15] and the
(extended) Ziv-Zakaı̈ bound [7] are both known to be tight while
they come from two distinct theories with no a priori relationship.
In the hybrid context, a bound including the Weiss-Weinstein bound
for the random part has already been proposed [5]. The purpose of
the present paper is to provide a hybrid bound including the Ziv-
Zakaı̈ bound for the random part.

3. THE PROPOSED BOUND

Consider an observation space Ω of points X and let θ = (θd θr)
T

denotes the hybrid parameter vector to estimate where θd ∈ Πd ⊆ R
is an unknown deterministic parameter and where θr ∈ Πr ⊆ R is
an unknown random parameter characterized by a prior p.d.f. which
is assumed to be independent of θd. In other words f (θr; θd) =
f (θr). Let f (X,θ) = f (X, θr; θd) denote the joint PDF of X and

θr parameterized by θd. For any estimators θ̂ =
(
θ̂d θ̂r

)T

and for
any hd and hr such that θd +hd ∈ Πd and θr +hr ∈ Πr satisfying
the following assumptions:
1) ∀θr ∈ Πr , f (X,θr; θd) = 0 ⇒ f (X,θr + hr; θd + hd) = 0.

2) ∀θr ∈ Πr , EX|θ;θd

[
θ̂d
]
= θd, EX|θr ;θd+hd

[
θ̂d
]
= θd + hd.

3) ∀θd ∈ Πd, EX,θr ;θd

[
θ̂r − θr

]
= 0 and

EX,θr+hr ;θd

[
θ̂r − (θr + hr)

]
= 0.

Then, estimators MSE is bounded by (The proof is given in Ap-
pendix)

EX,θ

[(
θ̂ − θ

)(
θ̂ − θ

)T
]
≽ CV−1CT , (1)

where ”A ≽ B” means A−B is a positive semidefinite matrix.
Each element of matrix V is given by

{V}1,1 = µ (h1)− 1, (2)

{V}2,2 = β (h2,h2) + β (−h2,−h2)− 2β (h2,−h2) , (3)

and
{V}1,2 = {V}2,1 = α (h1,h2)− α (h1,−h2) . (4)

The matrix C is given by

C =

(
h1d 0
h1r h2rα (0,h2)

)
(5)

Let us set h1 = (h1d h1r)
T and h2 = (0 h2r)

T which are the so
called test-points. Finally µ (.), α (., .) and β (., .) are defined by

µ (h) = EX,θ

[
f2 (X,θ + h)

f2 (X,θ)

]
, (6)

α (h1,h2) = EX,θ

[
f (X,θ + h1)

f (X,θ)
min

(
f (X,θ + h2)

f (X,θ)
, 1

)]
(7)

and

β (h1,h2) (8)

= EX,θ

[
min

(
f (X,θ + h1)

f (X,θ)
, 1

)
min

(
f (X,θ + h2)

f (X,θ)
, 1

)]
,

where min (a, b) denotes the smallest value taken from a or b.
Remarks:

(i) If θ = θr only (i.e. assuming that θd is known), the proposed
bound reduces to one particular form of the Ziv-Zakaı̈ family given
by (4.17) in [11] chapter 4.
(ii) Assumption 1) means that the random parameter support can
not be a compact interval; for example the proposed bound does not
apply for an uniform prior (as the HBB and the HBWWB).

4. A PRATICAL FORM FOR COMPLEX GAUSSIAN
OBSERVATION MODEL WITH PARAMETERIZED MEAN

Consider the following complex Gaussian observation model with
parameterized mean:

x = g (θd, θr) + n, (9)

where x ∈ CP is a P-dimensional observation vector, the function
g (., .) is defined from R2 to CP in order to model the physical mea-
surement process and n is the noise assumed to be random complex
circular Gaussian with zero mean and covariance matrix σ2

nIP . As-
sume that the prior p.d.f. of θr is Gaussian centered with variance
σ2
θr and does not depend on θd and assume that n and θr are statis-

tically independent.
The main challenge to compute the proposed bound is to obtain

α (., .) and β (., .) since the expression of µ (h) is already known in
[16]:

µ (h) = Eθr

(
e

2
σ2
n

∥g(θ+h)−g(θ)∥2
)
. (10)

We start by the expression of β (., .) since it can be directly ob-
tained from the literature.

4.1. Expression of β (., .)

For all δ1 = (0 δ1)
T and δ2 = (0 δ2)

T such that δ1 ̸= δ2,
β (δ1, δ2) is similar to (2) in [17]

β (δ1, δ2) = Eθr (Iβ1
+ Iβ2

+ Iβ3
+ Iβ4

) (11)

with

Iβ1
= F

N
(
0,

σ2
n
2

Γ

) (
−σ2

nb (δ1)

2
,−σ2

nb (δ2)

2

)
, (12)

Iβ2
= e

−
δ22+2θrδ2

2σ2
θr F

N
(
mβ2

,
σ2
n
2

Γ′
) (

−σ2
nb (δ1)

2
,
σ2
nb (δ2)

2

)
,

(13)

Iβ3
= e

−
δ21+2θrδ1

2σ2
θr F

N
(
mβ3

,
σ2
n
2

Γ′
) (

σ2
nb (δ1)

2
,−σ2

nb (δ2)

2

)
,

(14)
and

Iβ4
= e

2Re(dH (δ1)d(δ2))
σ2
n

−
δ21+δ22+2θr(δ1+δ2)

2σ2
θr (15)

×F
N

(
mβ4

,
σ2
n
2

Γ

) (
σ2
nb (δ1)

2
,
σ2
nb (δ2)

2

)
.

where FN (m,Σ) (a) is defined as the value at the point a of a nor-
mal cumulative distribution function parameterized by mean m and
covariance matrix Σ, d (δ1) = g (θd, θr + δ1)− g (θd, θr),

b (δ1) =
1
σ2
n
∥d (δ1)∥2 + δ21+2θrδ1

2σ2
θr

,
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mβ2
=

(
−Re

(
dH (δ1)d (δ2)

)
∥d (δ2)∥2

)T
,

mβ3
=

(
∥d (δ1)∥2 − Re

(
dH (δ1)d (δ2)

))T
,

mβ4
=

(
∥d (δ1)∥2 +Re

(
dH (δ1)d (δ2)

)
∥d (δ2)∥2 +Re

(
dH (δ1)d (δ2)

) )
,

Γ =

(
∥d (δ1)∥2 Re

(
dH (δ1)d (δ2)

)
Re

(
dH (δ1)d (δ2)

)
∥d (δ2)∥2

)
and

Γ′=

(
∥d (δ1)∥2 −Re

(
dH (δ1)d (δ2)

)
−Re

(
dH (δ1)d (δ2)

)
∥d (δ2)∥2

)
.

Note that if δ1 = δ2, Γ and Γ′ become singular. However, an ana-
lytic expression exists in [17] where (11) is modified with the quan-
tities

Iβ1
= F

N
(
0,

σ2
n∥d(δ1)∥2

2

) (
−σ2

nb (δ1)

2

)
, Iβ2

= Iβ3
= 0 (16)

and

Iβ4
= e

2∥d(δ1)∥2

σ2
n

−
δ21+2θrδ1

σ2
θr (17)

×F
N

(
2∥d(δ1)∥2,

σ2
n∥d(δ1)∥2

2

) (
σ2
nb (δ1)

2

)
.

4.2. Expression of α (., .)

The definition of α (h1,h2) is given by (7). The main idea is to split
integration domains in which the min operator can be substituted by
f(x,θ+h2)

f(x,θ)
or 1. Thus, we can split α (h1,h2) into two parts, for all

h1 = (h1d h1r)
T and h2 = (0 h2r)

T

α (h1,h2) = Eθr (Iα1 + Iα2) (18)

with

Iα1 =

∫
V1

f (x,θ + h1)

f (x,θ)
f (x|θ) dx, (19)

and

Iα2 =

∫
V2

f (x,θ + h1) f (x,θ + h2)

f2 (x,θ)
f (x|θ) dx, (20)

where

V1 = {x ∈ Ω| f (x,θ + h2)

f (x,θ)
≥ 1}, (21)

and

V2 = {x ∈ Ω| f (x,θ + h2)

f (x,θ)
< 1}. (22)

Some calculus similar to [17] lead to the following closed-form ex-
pressions:

Iα1 = e
−

h2
1r+2θrh1r

2σ2
θr F

N
(
mα1 ,

σ2
n∥d(h2r)∥2

2

) (
−σ2

nb (h2r)

2

)
(23)

and

Iα2 = e

2Re(d̃H (h1d,h1r)d(h2r))
σ2
n

−
h2
1r+h2

2r+2θr(h1r+h2r)

2σ2
θr (24)

×F
N

(
mα2 ,

σ2
n∥d(h2r)∥2

2

) (
σ2
nb (h2r)

2

)
,

where the means are mα1 = −Re
(
d̃H (h1d, h1r)d (h2r)

)
and

mα2 = Re
(
d̃H (h1d, h1r)d (h2r)

)
+ ∥d (h2r)∥2, and where

d̃ (h1d, h1r) = g (θd + h1d, θr + h1r)− g (θd, θr).

5. SIMULATION

To compare the proposed bound with other, one use the same ob-
servation model as in [5] (frequency estimation). Consequently,
g (θd, θr) = θdb (θr) where θd is the amplitude and b (θr) =[
1 ejθr ej2θr · · · ej(P−1)θr

]T
is a normalised cisoı̈d with an-

gular frequency θr . The scenario is the following: P = 32,
θd = 1 and σ2

θr = 1
2

. From [18], the HCRB is 2 × 2 diago-

nal matrix with entries {HCRB}1,1 =
σ2
n

2P
and {HCRB}2,2 =(

2θ2d
σ2
n

(
P (P+1)(2P+1)

6
− P 2

)
+ 1

σ2
θr

)−1

. The HBB, the HBWWB

which is given in [5] and the proposed bound are computed with
h1 ∈ [−1; 1] × {0} where the sampling interval for the first com-
ponent is δh1d = 0.01 and h2 ∈ {0} ×

[
− 3

2
; 3
2

]
where the

sampling interval for the second component is δh2r = 3
28

. Last,
the MAPMLE is obtained by searching the best candidate s ∈ [0; 2]
and θr ∈

[
− 3

2
; 3
2

]
maximizing the joint p.d.f. fx,θr ;θd (x, θr; θd).

The empirical MSE of the MAPMLE is assessed with 1000 Monte-
Carlo trials. We only plot on the figure (1) the HCRB, the HBB,

Fig. 1. Comparison of MSE hybrid lower bounds versus SNR

the HBWWB, the proposed bound denoted HBZZB, and the em-
pirical Maximum A Posteriori / Maximum Likelihood Estimator
(MAPMLE) MSE for the random parameter θr which is the only
one exhibiting the threshold effect. We remark that the HBZZB is
also accurate to predict the SNR threshold for this estimation prob-
lem as well as the HBWWB. Such a comparison has already been
seen in the literature but in the Bayesian framework only (see [8]
and [19]).

6. CONCLUSION

In this paper, a hybrid lower bound on the mean square error based
on the Barankin bound and on the Ziv-Zakaı̈ has been developed. As
the previously introduced hybrid Barankin Weiss-Weinstein bound,
the proposed bound is found to be a tight bound but provide an alter-
native in terms of calculation.
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7. APPENDIX

If θ̂ is an estimator of θ, from [20, p.124], under some mild regular-
ity assumptions and for any real-valued vector v with finite second
order moment (1) holds. The general expression of matrices in-
volved in (1) are C = EX,θ

[(
θ̂ − θ

)
vT

]
and V = EX,θ

[
vvT

]
.

Note that (1) does not currently lead to a lower bound on the MSE
since C depend on θ̂. However, let us set v = (vd vr)

T where

vd =

{
f(X,θ+h1)

f(X,θ)
− 1 if θ ∈ {θ : f (X,θ) > 0,X ∈ Ω}

0 else
and

vr = min
(

f(X,θ+h2)
f(X,θ)

, 1
)
− min

(
f(X,θ−h2)

f(X,θ)
, 1
)

for all h1 =

(h1d h1r)
T and h2 = (0 h2r)

T . By the definition of V =
EX,θ

[
vvT

]
, this choice of vd and vr leads to the matrix V given

in (2), (3) and (4) without major mathematical difficulties. In order
to provide a new hybrid lower bound independent of estimation
scheme, we have to prove that C does not depend on θ̂. It has
already be proved that {C}1,1 and {C}2,1 do not depend on θ̂ in [5]
(see Appendix) under the aforementioned assumptions 2) and 3).

Before calculating {C}1,2 and {C}2,2, we give a preliminary
result: for any real-valued function l (X,θd) defined on Ω×Πd and
for any h = (0 hr)

T where hr ∈ Πr , one has

∫
Πr

l (X,θd)

 min
(

f(X,θ+h)
f(X,θ)

, 1
)

−min
(

f(X,θ−h)
f(X,θ)

, 1
)  f (X,θ) dθr

= l (X,θd)

∫
Πr

(
min (f (X,θ + h) , f (x,θ))
−min (f (X,θ − h) , f (x,θ))

)
dθr.

(25)
Note that∫

Πr

(
min (f (X,θ + h) , f (x,θ))
−min (f (X,θ − h) , f (x,θ))

)
dθr =

∫
Πr

min (f (X,θr + hr; θd) , f (X,θr; θd)) dθr

−
∫

Πr

min (f (X,θr − hr; θd) , f (X,θr; θd)) dθr

 .

(26)
Let us study the first integral. By substituting θ′r = θr + hr , the
integration domain is still Πr by assumption 1 and then,∫
Πr

min (f (X,θr + hr; θd) , f (X,θr; θd)) dθr

=

∫
Πr

min
(
f
(
X,θ′r; θd

)
, f

(
X,θ′r − hr; θd

))
dθ′r, (27)

Thus, using (27) into (25), one obtains

∫
Πr

l (X,θd)

 min
(

f(X,θ+h)
f(X,θ)

, 1
)

−min
(

f(X,θ−h)
f(X,θ)

, 1
)  f (X,θ) dθr

= 0 a.e. X ∈ Ω and for every θd ∈ Πd (28)

Remarks:
• This result is similar to condition (1) in [15] with the slight differ-
ence that the joint PDF depends on θd.
• If we chose h = (hd hr) with hd ̸= 0 in this premilinary re-
sult, then (28) would depend on X. Consequently, we would find
that {C}1,2 and {C}2,2 would depend on θ̂. Therefore we use
h2 = (0 h2r)

T .

Now, concerning {C}1,2, one has

{C}1,2 = EX,θ

[(
θ̂d − θd

)
vr
]

=
∫
Ω

(
θ̂d − θd

) ∫
Πr

 min
(

f(X,θ+h2)
f(X,θ)

, 1
)

−min
(

f(X,θ−h2)
f(X,θ)

, 1
) f (X,θ) dθrdX

= 0,

using (28) with l (X,θd) = θ̂d − θd.
Finally, concerning {C}2,2, one has

{C}2,2 = EX,θ

[(
θ̂r − θr

)
vr
]

=

∫
Ω

∫
Πr

(
θ̂r − θr

) min
(

f(X,θ+h2)
f(X,θ)

, 1
)

−min
(

f(X,θ−h2)
f(X,θ)

, 1
) f (X,θ) dθrdX

=

∫
Ω

∫
Πr

θr

(
min (f (X,θ − h2) , f (X,θ))
−min (f (X,θ + h2) , f (X,θ))

)
dθrdX,

(29)
by using (28) with l (X,θd) = θ̂r . Let us study∫

Πr

θr min (f (X,θ − h2) , f (X,θ)) dθr =∫
Πr

θr min (f (X,θr − h2r; θd) , f (X,θr; θd)) dθr. (30)

By substitution θ′r = θr − h2r , the integration domain for θ′r is still
Πr by assumption 1 and we have∫

Πr

θr min (f (X,θ − h2) , f (X,θ)) dθr

=

∫
Πr

(
θ′r + h2r

)
min

(
f
(
X,θ′r; θd

)
, f

(
X,θ′r + h2r; θd

))
dθ′r

=

∫
Πr

θ′r min
(
f
(
X,θ′r; θd

)
, f

(
X,θ′r + h2r; θd

))
dθ′r

+h2r

∫
Πr

min
(
f
(
X,θ′r; θd

)
, f

(
X,θ′r + h2r; θd

))
dθ′r. (31)

Thus, plugging (31) in (29), one has

{C}2,2 = h2rEX,θ

[
min

(
f (X,θ + h2)

f (X,θ)
, 1

)]
. (32)

Consequently, one has proved that the proposed choice of function
v leads to a matrix C which does not depend on θ̂.
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