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ABSTRACT

In this paper, we consider the tracking of a radar target with
unknown range and range rate at low signal-to-noise ratio (SNR).
For this nonlinear estimation problem, the Cramér-Rao lower bound
(CRLB) provides a bound on an unbiased estimator’s mean-squared
error (MSE). However, there exists a threshold SNR at which the es-
timator variance deviates from the CRLB. We consider the Barankin
bound (BB) on the range and range-rate variance in order to obtain
a tighter lower bound at low SNR, and we use the BB to predict
the SNR threshold for a transmitted signal. We demonstrate that the
BB with the additional information provided by the threshold SNR
has an advantage over the CRLB in selecting the optimal transmit
waveform at low SNRs. We also develop a waveform parameter
configuration method that uses the BB and the ambiguity function
resolution cell measurement model to optimize the SNR threshold.

1. MOTIVATION AND RELATION TO PRIOR WORK

In narrowband radar and tracking problems, we are interested in si-
multaneously measuring the time delay and Doppler shift of a re-
ceived target reflected signal for estimating the target’s range and
range rate [1]. The estimates of the target’s location and velocity at
the receiver can vary over time, partly due to the presence of clutter,
environmental effects or general interference, and variance or reso-
lution of these estimates can be affected by the choice of the trans-
mitted waveform parameters [1–3]. Thus, techniques have been pro-
posed to opportunistically transmit the best waveform [2, 3] in order
to improve estimation error performance. Waveform configuration
for low SNRs has also been considered with the track-before-detect
algorithm and using the CRLB to predict estimates of the target’s
location and velocity [4, 5].

The CRLB provides a lower bound on an estimator’s variance
performance. However, in target tracking problems with the receiver
operating under low SNR conditions, the CRLB may not provide a
tight bound, leading to inaccurate predictions of the position and ve-
locity estimates [1, 6–8]. For SNRs below a certain threshold SNR,
the estimator variance deviates from the CRLB [6, 9]. As the SNR
approaches this threshold region, the estimator’s performance ap-
proaches an ambiguity or threshold region, where the estimator per-
formance deteriorates rapidly. The errors in the threshold region are
attributed to the fact that the estimator has dominant sidelobes due
to unusually high noise fluctations. These fluctuations drive outlier
values that are not, in general, the true values located at the main-
lobe [1, 7, 10]

The Barankin bound (BB) is the greatest lower bound (infimum)
on the variance of an unbiased parameter estimate [11]. The BB has

This work was sponsored in part by DARPA under the SSPARC program.
The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

been applied to many statistical signal processing problems to pro-
vide a tighter lower bound on the variance of an unbiased estimator.
It also quantifies the threshold SNR, below which the BB starts to
deviate from the CRLB [6, 9, 12–14]. As the BB requires the so-
lution of an integral equation, it rarely has a closed form solution.
However, computationally tractable approximations to the true BB
have been considered for practical problems [10, 12, 13, 15–17].

The most common BB approximation was computed using the
McAulay-Seidmann (MS) form [12, 14, 15]. In [8, 18], an approx-
imation was considered that provides a tighter approximation than
that of the MS form and is directly applicable to most signal pro-
cessing measurement models. In [14], BB threshold analysis is per-
formed for the track-before-detect problem using the MS approxi-
mation for Gaussian point-spread functions. In this paper, we em-
ploy the approximation introduced in [8] for the ambiguity function
(AF) resolution cell measurement model [4, 5, 14] for a Gaussian-
windowed linear frequency-modulated (LFM) chirp. We specifically
examine the threshold SNR as a function of the waveform duration
and frequency-modulation (FM) rate. We then propose a waveform
parameter selection approach for low SNR target tracking based on
the BB threshold SNR. Although for a different problem, a similar
threshold SNR design approach was explored for acoustic array ele-
ment spacing using the MS approximation in [10].

This paper is organized as follows. In Section 2, we provide
the resolution cell measurement model and the Gaussian-windowed
LFM signal characteristics. In Section 3, we obtain the BB approx-
imation and we propose the optimal waveform selection for range
and Doppler estimation based on the BB SNR threshold in Section
4. Estimation bound simulations are provided in Section 5.

2. RESOLUTION CELL MEASUREMENT MODEL

The AF resolution cell signal model can be written as [4, 5]

z(i,j) = I0 AFs(i∆τ , j∆ν ; p) + w(i,j) , (1)

for i= 1, . . . Nτ , j = 1, . . . Nν . Here, I0 is the return signal energy
intensity, s(t; p)∈L2(R) is the transmit waveform with parameter
p ∈ Rp, and ∆τ and ∆ν are the delay and Doppler cell dimensions,
respectively. The (i, j)th AF cell is defined in terms of the AF sur-
face AFs(τ, ν; p) = |

∫
R s(t+τ/2; p) s∗(t−τ/2; p) ej2πνtdt|2 [1].

The noise term w(i,j) in (1) is zero-mean, additive white Gaussian
noise with variance σ2

w. Note that the AF cell area is ∆τ∆ν and the
total number of AF cells is Nz =NτNν , as demonstrated in Fig. 1.
In vector form, (1) can be written as

z = I0 a(θ,p) + w , (2)

where θ = [τ ν]T , a(θ,p) ∈ RNz is
a(θ,p) = [AFs(∆τ ,∆ν ; p) . . . AFs(Nτ∆τ ,∆ν ; p) . . .

. . . AFs(∆τ , Nν∆ν ; p) . . .AFs(Nτ∆τ , Nν∆ν ; p)]T ,
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Fig. 1. AF resolution cell model for a Nτ ×Nν delay-Doppler grid,
where AF(i,j)(τ, ν; p) = AFs(i∆τ , j∆ν ; p).

and w is the white Gaussian noise vector. The vector θ of deter-
ministic parameters needs to be estimated to provide range r = c τ/2
and range rate ṙ = c ν/(2fc) measurements, where fc is the carrier
frequency and c is the signal propagation speed. Since the cells are
assumed to be independent the AF resolution cell likelihood function
is given by

p(z|θ,p) =

Nτ∏
i=1

Nν∏
j=1

p(z(i,j)|θ,p)

=
1

(2πσ2
w)Nz/2

exp

[
− 1

2σ2
w

||z− I0 a(θ,p)||22
]
.

where ||v||22 =vTv is the Euclidean norm.
We consider the Gaussian-windowed LFM signal of the form

s(t; p) = (2πλ)−1/2e−t
2/(2λ2)ej2πb0(t/tr)

2

,

where p = [b0 λ]T , FM rate b0, and Gaussian window duration λ.
Note that we assume that all LFM signals have normalized unit en-
ergy. As the instantaneous frequency of the LFM signal is 2b0t, its
frequency range isB = 2b0λ. Thus, if we fix the signal minimum and
maximum bandwidth and duration, we can increase the bandwidth
by increasing the LFM rate b0.

The AF for the Gaussian-windowed LFM and its partial deriva-
tives with respect to τ and ν (needed for computing estimation
bounds) are given by [1]

AFs(τ, ν; p) = exp
[
− 1

2

(
τ2/λ2 + λ2(ν − 2b0τ)2

)]
(3)

∂AFs(τ, ν; p)

∂τ
=
b0λ

4(2ν − 4b0τ)− τ
λ2

AFs(τ, ν; p) (4)

∂AFs(τ, ν; p)

∂ν
= λ2(2b0τ − ν)AFs(τ, ν; p) . (5)

3. ESTIMATION BOUNDS

The CRLB is the weakest bound on the variance of an unbiased esti-
mator as it does not offer accurate variance information for relatively
low SNR and/or low data record lengths in estimation problems that
exhibit the threshold SNR phenomenon. This is in contrast to the
BB, which is the tightest bound on the variance of an unbiased esti-
mator [11]. Note that the following relationship holds in general for
the covariance matrix Σθ̂(z) of a parameter estimate θ̂(z),

Σθ̂(z) � BB � CRLB ,

with equality asymptotic at high SNR and/or large data record
lengths.

3.1. Barankin Bound Approximation

A new BB approximation is presented in [8], showing it to be a
tighter approximation to the theoretical BB in comparison to the
MS approximation [12, 15]. The approximated BB, BB(Ψ), with
Ψ = (θ, η,p), is computed as

BB(Ψ) = VTG(Ψ)−1V (6)

where V =
[
∆ J(θ(0)) · · · J(θ(L))

]T
,

∆ =
[
0Q×1 θ

(1) − θ(0) · · · θ(L) − θ(0)
]

and

G(Ψ) =

[
MS(Ψ) H(Ψ)T

H(Ψ) EFI(Ψ)

]
.

Where η is the SNR, MS(Ψ) ∈ R(L+1)×(L+1) is the MS matrix,
EFI(Ψ) ∈ RQ(L+1)×Q(L+1) is the extended Fisher information
(EFI) matrix that extends the Fisher information matrix (FIM) to
L test points θ(l) ∈Θ, l = 1, . . . L, beyond the true parameter θ(0),
H(Ψ) ∈ RQ(L+1)×(L+1) contains a mix of MS and EFI entries,
and J(θ(l)) = IQ, is the Jacobian of test point parameter vector; in
our case, IQ is the Q×Q identity matrix where Q= 2 for our signal
model.

We apply the BB appropximation to z = I0a(θ,p)+w, where w
is a zero-mean white Gaussian noise vector with known covariance
σ2
wINz . We evaluate the entries of the block matrices MS, EFI,

and H in Eq. (6) for the Gaussian z as [8]

MSm,n(Ψm,n) = exp
( I20

2σ2
w

(am,n(p)− δm,n(p))
)

(7)

Hi(Ψm,n) =
I20
σ2
w

MSm,n(Ψm,n)
∂aT (θ(m),p)

∂θi

·
(
a(θ(n),p)− a(θ(0),p)

)
(8)

EFIi,l(Ψm,n) =
I20 MSm,n(Ψm,n)

σ2
w

·
{
∂aT (θ(m),p)

∂θi

∂a(θ(n),p)

∂θl

+
I20
σ2
w

∂aT (θ(m),p)

∂θi

(
a(θ(n),p)− a(θ(0),p)

)
·

·
(
a(θ(m),p)− a(θ(0),p)

)T ∂a(θ(n),p)

∂θl

}
(9)

where Ψm,n = (θ(m),θ(n), η,p), θi is the ith entry of θ and

am,n(p) = ||a(θ(m),p) + a(θ(n),p)− a(θ(0),p)||22
δm,n(p) = ||a(θ(m),p)||22 + ||a(θ(n),p)||22 − ||a(θ(0),p)||22 .

Here, SNR is defined as η = I20/σ2
w,m,n ∈ {0}∪{1, . . . , L} are in-

dexed up to the maximum number of test pointsL (including the true
parameter θ(0)) and i, l ∈ {1, . . . , Q} are indexed up to the dimen-
sion Q of θ. Note that for L= 1, the BB becomes the Hammersley-
Chapman-Robbins bound (HChRB) [8, 14].

3.2. Barankin Bound Test Point Selection

The BB holds for any test point θ(l) ∈ Θ provided that the point
is inside the parameter space for the given problem [8, 13, 15, 19].
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For the resolution cell model, the parameter space Θ has support
on [−τb, τb] × [−νb, νb], and we choose the test points to be the
boundary corners of the parameter space. This is because the bound-
ary reflects a maximum outlier in the parameter space and thus was
found to maximize the BB on Θ. We continue to increased the num-
ber of test points L until there was no significant gain in tightness of
the bound. As an example, Fig. 2 shows the BB approximation for
an increasing number of test points for an LFM withB = 1 MHz and
λ= 1 µs on a 500× 500 grid.
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Fig. 2. Performance bounds: CRLB, Hammersley-Chapman-
Robbins bound (HChRB) which is the BB bound with L= 1 test
points, and BB for an increasing number of test points.

Note that the CRLB can be computed with the true parameter
θ(0) using only the FIM. It is computed directly from the BB ap-
proximation explicitly in terms of a(θ,p) as
CRLB(η,p) = EFI1,1(Ψ0,0)−1

= η−1

 ∂aT (θ(0),p)
∂τ

∂a(θ(0),p)
∂τ

∂aT (θ(0),p)
∂τ

∂a(θ(0),p)
∂ν

∂aT (θ(0),p)
∂ν

∂a(θ(0),p)
∂τ

∂aT (θ(0),p)
∂ν

∂a(θ(0),p)
∂ν

−1

.

4. WAVEFORM SELECTION ALGORITHM

Recalling that the BB is asymptotically equivalent to the CRLB
for high SNR values, as visualized in Fig. 3(c), we formally define
the threshold SNR ηth to be the value at which the BB estima-
tor variance appreciably deviates from the respective CRLB. At
high SNR, the relative error between the BB and CRLB is within
some ε > 0. We define this asymptotic SNR region as the set
Aε(p) = {η ∈ R+ : ρ(η,p) < ε} ⊂ R, where ρ(η,p) is the relative
deviation of the BB from the CRLB and is given by

ρ(η,p) =
trace {BB(Ψ)−CRLB(Ψ)}

trace {CRLB(Ψ)} .

Therefore, the value of η where ρ(η,p) is a maximum represents the
BB threshold SNR. Thus, we compute the threshold SNR as

ηth(p) = arg max
Aε(p)

ρ(η,p) . (10)

It can be clearly seen in Eq. (10), the threshold SNR depends on
the choice of the waveform parameters p. As a result, we can con-
sider using the knowledge of a signal’s threshold SNR for selecting
a transmit waveform s(t; p) that is suitable for the current tracker
SNR that may be varying during tracking due to clutter or interfer-
ence.

5. SIMULATIONS

We computed the AF cells using with Nτ = 500, Nν = 500 for time
delay and Doppler, respectively, with supports [−30, 30] µs and
[−30, 30] MHz. Fig. 3(a) shows ρ(η,p) for a fixed bandwidthB = 1
MHz for various durations between 0.1 ≤ λ ≤ 10µs resulting in
a waveform parameter vector p = [λ 0.5/λ]T . Here, the FM rate is
given by 0.5/λ in MHz2. We have plotted ηth(p) as a function of
duration in Fig. 3(b) for when ε = 10−1. We see that there is a peak
in the threshold SNR around 1 µs. This is where the AF is most
localized in both time delay and Doppler shift for this particular
parameter space.

For this case we find that, the more spread the AF is in the pa-
rameter space, the lower the threshold SNR is. However, for target
tracking performance, this also means decreased range and range
rate resolution given by the relationships in Eqs. (11)-(12) for the
Gaussian-windowed LFM as [1]

σr =
c

2

(
1

λ2
+ 4b20λ

2

)−1/2

(11)

σṙ =
c

2fcλ
. (12)

Thus, we find that there is a trade off to be considered between a
signal’s ηth and its ability to resolve a target’s location and velocity.

Using the same AF grid with Nτ = 500, Nν = 500 and support
[−30, 30] µs and [−30, 30] MHz, we show ρ(η,p) in Fig. 4(a) for
an LFM signal with a fixed duration λ= 1 µs and varying the FM rate
b0, thus we have a parameter vector p = [1µs b0]T . The correspond-
ing values of ηth(p) as a function of FM rates, for 0.1 ≤ b0 ≤ 10
THz2, is shown in Fig. 4(b) with ε= 10−1. Note that the values of
the chirp rate here are chosen as a simulation example to show gen-
eral behaviour and that practical radar waveform specifications may
be different.

We see that the threshold SNR decreases as the LFM rate b0. We
do not find that ηth reaches a peak as it did for the previous example
and intuitively this result makes sense due to the fact that the chirp
rate will only affect the range resolution whereas in the previous
example we can see the duration affects both the range and range
rate resolution as can be seen in Eqs. (11)-(12).

6. CONCLUSION

In this paper, we used an approximation of the BB for Gaussian
windowed LFM signals with the AF resolution cell measurement
model to compute a tigher lower bound for range and Doppler es-
timation. We proposed a waveform selection algorithm based on
the BB threshold SNR, and we investigated the threshold SNR as a
function of LFM rate for a fixed duration and a a function of fixed
bandwidth and variable signal duration. With these results, we intro-
duce an approach of computing the threshold SNR based of the rate
and duration of the LFM signal using the BB and CRLB bounds.
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Fig. 3. (a) Relative CRLB and BB deviation ρ(η,p) for fixed bandwidthB = 1 MHz and varying LFM duration λ; (b) Threshold SNR ηth(p)
for fixed bandwidth B = 1 MHz and LFM duration 0.1 ≤ λ ≤ 10 µs; (c) CRLB and BB for fixed duration λ= 1 µs and varying LFM rate b0.
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Fig. 4. (a) CRLB and BB relative deviation ρ(η,p) for an LFM sig-
nal with fixed duration λ= 1 µs and varying FM rate b0; (b) Thresh-
old SNR ηth(p) for an LFM signal with fixed duration λ= 1 µ and
FM rate 0.1 ≤ b0 ≤ 10 THz2.
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