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ABSTRACT

Two decentralized minimum mean-squared error downlink

beamformer designs are proposed for multiple-input single-

output coherent coordinated multi-point transmission. We

propose a parallel beamformer design with a fast initial rate

of convergence for systems with relatively few cooperative

base stations (BSs). An alternating direction method of mul-

tipliers based design is provided for more complex systems

with a large number of cooperating BSs. Support for data

sharing among the serving BSs is assumed over limited back-

haul connectivity. Channel state information (CSI) is not

shared among the cooperating transmitters, and, thus, only

local CSI is available at each BS via uplink pilot signaling.

Index Terms— Cellular networks, coordinated beam-

forming, mean-squared error minimization, multi-user beam-

forming, non-linear optimization.

1. INTRODUCTION

Wireless cellular networks are becoming increasingly crowded

as the cells are becoming smaller and more dense. In systems,

with high cross channel gains, cooperation of simultaneously

transmitting base stations (BSs) can be exploited to provide

significant gains in terms of the achievable system perfor-

mance. Different forms of coordinated multi-point (CoMP)

transmission schemes have been proposed to leverage these

gains in dense networks, where conventional non-cooperative

methods fail due to highly complex interference management

requirements and limited spatial resources [1].

In this paper, we provide two decentralized minimum sum

mean-squared error (MSE) beamformer designs for CoMP

transmission with data sharing over the backhaul. The pro-

posed beam coordination is based on an assumption that the

channel state information (CSI) cannot be shared over the

backhaul and, thus, each BS has only knowledge of the lo-

cally measured CSI. The lack of global CSI requires iterative

beamformer design, where limited beam coordination infor-

mation is exchanged in each iteration. CoMP without com-

plete CSI exchange has been not been widely studied in the

past. Most of the research focus has been more towards varia-

tions of network multiple-input multiple-output (MIMO) type

systems, where the CSI is exchanged among the cooperating

BSs along with data [2]. While CSI sharing allows centralized

processing, it becomes difficult in practice for highly dense

systems or systems with fast fading and time correlated chan-

nel conditions, where the backhaul signaling requirements in-

crease rapidly with the system complexity. Due to queue-

ing and buffering, transmitted data is more tolerant to delay.

Furthermore, hierarchically, the data can be considered to be

readily available at the central processing units, while the CSI

has to be collected from the transmitters.

MSE has been used as a performance objective for vari-

ous types of systems. In terms of achievable throughput, it

was shown in [3] and [4] that MSE minimization provides a

lower bound for the mutual information. CoMP beamformer

designs have been considered for various performance objec-

tives and degrees of decentralization. The decentralized de-

sign of CoMP beamformers for minimizing the total power

was considered for multiple-input single-output (MISO) sys-

tems using dual decomposition in [5], while in [6], this prob-

lem was considered using the alternating direction method

of multipliers (ADMM) [7] to separate the coupling inter-

ference. In [8], low-complexity MIMO MSE minimization

with per-antenna power constraints was proposed with per-BS

Gauss-Seidel type iterative beamformer updates. Weighted

MSE minimization with imperfect CSI for network MIMO

systems was considered in [9]. All of the aforementioned

schemes assume CSI exchange among the cooperating BSs.

We propose two minimum sum MSE algorithms. For rela-

tively few cooperating BSs, we provide a parallel beamformer

design, where BSs assume fixed beamformers from the col-

laborating BSs in each iteration. This method provides fast

initial performance improvement. However, the convergence

cannot be guaranteed and, particularly, for high complexity

systems, the method can become unstable. For a more stable

approach, we propose an ADMM design with similar signal-

ing overhead and comparable rate of convergence.

2. SYSTEM MODEL

We consider a multi-cell system with B BSs each equipped

with NT transmit antennas. There are, in total, K single-
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antenna user terminals (UEs). Each UE k = 1, . . . ,K is

served coherently by |Bk| BSs, where Bk contains the serv-

ing set of BS indices. Similarly, the set of user indices served

by BS b = 1, . . . , B is denoted by Cb = {k|b ∈ Bk, k =
1, . . . ,K}. For notational convenience, we will denote the

set of all user indices as K = {1, . . . ,K}.

The downlink transmission is considered to be symbol

synchronous in the sense that each transmitted symbol from

Bk, k = 1, . . . ,K is coherently combined at all user termi-

nals. Data sharing is assumed within each serving set of BSs

Bk. Only local CSI knowledge is assumed, that is, each BS

b = 1, . . . , B is only aware of the channel vectors hb,k ∈
C

NT ∀ k = 1, . . . ,K. Furthermore, we consider time division

duplexing (TDD), which imposes strong correlation between

the uplink and downlink channels.

The received signal at UE k = 1, . . . ,K is given as

yk =
∑

b∈Bk

h
T
b,kmb,kdk +

K
∑

i=1,i 6=k

∑

j∈Bi

h
T
j,kmi,jdi + nk, (1)

where mb,k ∈ C
NT is the beamformer of BS b to user k and

nk ∼ CN (0, σ2
kI) denotes the receiver noise. The complex

data symbols dk, k = 1, . . . ,K are assumed to be indepen-

dent and identically distributed (i.i.d.) with E{|dk|
2} = 1.

The received symbol at UE k = 1, . . . ,K is given as d̂k =
gkyk, where gk is the gain compensating receive filter of the

corresponding user. Finally, the MSE at UE k is given as

ǫk , E{|d̂k − dk|
2} = |

∑

b∈Bk

gkh
T
b,kmb,k − 1|2+

K
∑

i=1,i 6=k

|
∑

b∈Bi

gkh
T
b,kmb,i|

2 + |gk|
2σ2

k.

(2)

3. PROBLEM FORMULATION

By regrouping the corresponding MSE expressions (2), the

sum MSE minimization problem subject to total power con-

straints per BS can be written as

min .
gk,mb,k

K
∑

k=1

(−2Re{
∑

b∈Bk

gkh
T
b,kmb,k}+

K
∑

i=1

|
∑

b∈Bi

gkh
T
b,kmb,i|

2 + |gk|
2σ2

k)

s. t.
∑

k∈Cb

‖mb,k‖
2 ≤ Pb, b = 1, . . . , B,

(3)

where Pb, b = 1, . . . , B are the sum power limits per BS.

Problem (3), is not jointly convex in the receive filters and

transmit beamformers. However, fixing either one results in a

convex problem. For fixed transmit beamformers, the optimal

gain normalizing receive filters can be found from the roots

of the Lagrangian of (3) to be

gk =

∑

b∈Bk
m

H
b,kh

∗
b,k

∑K

i=1
|
∑

b∈Bi
hT
b,kmb,i|2 + σ2

k

, k = 1, . . . ,K. (4)

The receive filter design is trivially decoupled between the

UEs and relies only on knowledge of the local CSI. In TDD

systems, the effective local CSI can be efficiently distributed

by using precoded downlink demodulation pilots.

For fixed receive filters (4), (3) does not decouple be-

tween the transmitting BSs due to coherent reception at the

UEs. This is a major distinction between the coherent and

non-coherent signal reception, when considering distributed

solutions. Non-coherent MSE minimization is readily decou-

pled and is, as such, easily decentralized [10].

4. DECENTRALIZED BEAMFORMER DESIGN

In this section, we will derive two decentralized beamform-

ing methods for (3). We focus on the beamformer design,

while assuming that the receive filters gk, k = 1, . . . ,K are

fixed and of the form given by (4). The alternating receive fil-

ter and transmit beamformer updates can be straightforwardly

extended to MIMO systems (similarly to [10]).

4.1. Direct Parallel Design

A direct parallel design for (3) can be carried out by assuming

that the beamformers from the cooperating BSs are fixed to

match the received signal from the previous iteration. With

this assumption, the beamformer design problem in the nth

iteration for each BS b = 1, . . . , B reduces to

min .
mb,k

∑

k∈Cb

(

K
∑

i=1

|gkh
T
b,kmb,i + cnk,i − gkh

T
b,km

n−1

b,i |2−

2Re{gkh
T
b,kmb,k})

s. t.
∑

k∈Cb

‖mb,k‖
2 ≤ Pb, b = 1, . . . , B.

(5)

where

cnk,i =
∑

j∈Bi

gkh
T
j,km

n−1

j,i ∀ (k, i) ∈ K ×K. (6)

It can be seen that the decoupled problem formulation re-

quires each UE k = 1, . . . ,K, to provide the coherently re-

ceived signals cnk,i from the previous iteration for all active

users i = 1, . . . ,K to the BSs.

The direct parallel design achieves significant perfor-

mance gains on first few iterations. However, the convergence

cannot be guaranteed and the algorithm is unstable when the

number of simultaneously transmitting BSs becomes large

(see Sect. 5). The stability of the algorithm can be improved

by imposing smoothing after each iteration to restrict the
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degree of change in the beamformers [11, Chap. 2.2]. With

smoothing, the next iteration beamformers are given as

m
n+1

b,k = m̄b,k + α(mn
b,k − m̄b,k) ∀ b = 1, . . . , B, k ∈ Cb

(7)

for some α ∈ [0, 1], where m̄b,k is the solution of (5) and

α determines the degree of smoothing. The selection of step

size α is heuristic since at each step the BSs cannot evaluate

the impact on the system performance. Convergence of best-

response type algorithms have been further studied in [12],

where convergence could be guaranteed for strongly convex

subproblems with sufficient small step size. Note that since

the total sum power constraint is convex, the smoothing step

will preserve the feasibility of the power constraints [13].

If the beamformer updates (5) are performed in a sequen-

tial manner across the BSs, e.g., following a Gauss-Seidel

type update process, the algorithm is guaranteed to converge

as each update strictly improves the objective. However, with-

out parallel updates, the rate of convergence is significantly

reduced as shown in Sect. 5.

4.2. ADMM Design

A more stable alternative to the direct parallel design can be

achieved by using the ADMM approach, which has provided

an iterative procedure with efficient decomposition and good

convergence properties for various types of problems [7].

First, we introduce new variables si,k,b and constraints

sk,i,b = gkh
T
b,kmb,i ∀ (k, i) ∈ K ×K, b ∈ Bi. (8)

The dual variables (Lagrangian multipliers) of (8) are denoted

as λk,i,b. The principal idea in ADMM is to alternate the up-

dates of variables sk,i,b and mb,i along with the dual variables

λk,i,b of (8) while keeping the others fixed. Now, to sepa-

rate the updates, we use Lagrangian relaxation of the con-

straints (8). Additionally, we impose penalty norm terms for

the constraint violation, which are used to enforce the con-

straints and improve the rate of convergence. Finally, to re-

duce the signaling requirements, we introduce average re-

ceived signal constraints [7, Sect. 7.3] for each UE corre-

sponding to the reception from each collaborating set of BSs

Bk, k ∈ K as s̄k,i =
1

|Bi|

∑

b∈Bi
sk,i,b ∀ (k, i) ∈ K ×K.

Now, in nth iteration, we need to solve the following opti-

mization problem

min .
sk,i,b,s̄k,i,

mb,k

K
∑

k=1

(

K
∑

i=1

||Bi|s̄k,i|
2 − 2Re{

∑

b∈Bk

gkh
T
b,kmb,k})

K
∑

k=1

K
∑

i=1

∑

b∈Bi

ρ|gkh
T
b,kmb,i − sk,i,b + λn

k,i,b|
2

s. t. s̄k,i =
1

|Bi|

∑

b∈Bi

sk,i,b ∀ (k, i) ∈ K ×K,

∑

k∈Cb

‖mb,k‖
2 ≤ Pb, b = 1, . . . , B,

(9)

where |Bi| denotes the cardinality of set Bi, parameter ρ is

adjusted to determine the degree of enforcement for con-

straints (8). The dual variables λn
k,i,b in (9) are scaled so

that they can be incorporated into the penalty norms. For

a detailed discussion on ρ balancing and scaled dual vari-

ables, see [7]. Note that sk,i,b ∀ (k, i, b) and s̄k,i ∀ (k, i) are

complex variables in (9).

Decentralized solution for (9) would still require exchang-

ing all sk,i,b ∀ (k, i, b) within the serving set Bi. Also, each

UE k would need to be able to separate individual effective

channels gkh
T
b,kmb,i ∀ i ∈ K, which is practically intractable

as it would require orthogonal pilot signaling within each co-

operating set of BSs Bk, k ∈ K.

To further simplify the problem formulation, we can elim-

inate the auxiliary variables sk,i,b ∀ (k, i, b) [7]. To this end,

we solve for the individual sk,i,b from (9), while keeping the

other variables fixed. This results in

sk,i,b = ank,i,b + s̄k,i − λ̄n
k,i −

1

|Bi|

∑

j∈Bi

gkh
T
j,kmj,i, (10)

where λ̄n
k,i = 1

|Bi|

∑

j∈Bi
λn
k,i,j and ank,i,b = λn

k,i,b +

gkh
T
b,kmb,i. When we substitute each sk,i,b in (9) with (10),

the dual variables are equal for all b ∈ Bi [7]. Thus, we can

combine all dual variables for each pair (k, i) ∈ K ×K as

λ̄n+1

k,i = λ̄n
k,i +

1

|Bi|

∑

j∈Bi

gkh
T
j,km

n+1

j,i − s̄n+1

k,i . (11)

Now, with (10) and dual update (11), (9) can be formulated as

min .
s̄k,i,
mb,k

K
∑

k=1

(

K
∑

i=1

||Bi|s̄k,i|
2 − 2Re{

∑

b∈Bk

gkh
T
b,kmb,k})+

K
∑

i=1

K
∑

k=1

ρ
∑

j∈Bi

|gkh
T
j,kmj,i − gkh

T
j,km

n
j,i + qnk,i|

2

s. t.
∑

k∈Cb

‖mb,k‖
2 ≤ Pb, b = 1, . . . , B,

(12)

where qnk,i = 1

|Bi|

∑

j∈Bi
gkh

T
j,km

n
j,i − s̄nk,i + λ̄n

k,i. Finally,

we can solve s̄k,i ∀ (k, i) ∈ K×K from (12) for fixed beam-

formers mn+1

b,k ∀ (b, k) and given dual variables λ̄n
k,i as

s̄n+1

k,i =
ρ

1 + ρ

(

1

|Bi|

∑

b∈Bi

gkh
T
b,km

n+1

b,i + λ̄n
k,i

)

. (13)

The decentralized solution is obtained by observing that,

both, the update (13) and dual update (11) can be managed

locally at each BS b, if the averaged coherently received sig-

nals 1

|Bi|

∑

j∈Bi
gkh

T
j,km

n
j,i are known from each UE k ∈ Cb.

Assuming that the UEs communicate the averaged coherently

received signals from the previous iteration (as in Sect. 4.1),

each BS can locally keep track of the primal and dual vari-

ables. This leads to the ability to solve for the local beam-

formers at each BS from (12) for fixed s̄k,i ∀ (k, i) ∈ K×K.
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Each UE k ∈ K has to communicate K complex symbols

to all BSs. This results in total K2 complex numbers per it-

eration. However, in practice, only the dominant interfering

signals should be considered, in order to reduce the signaling

overhead. The trade-off between the required amount of sig-

naling and system performance is a topic for future work. The

outline of the ADMM algorithm is given in Algorithm 1.

Due to lack of space, detailed convergence analysis is ne-

glected. Proof of convergence for the ADMM method for

convex problems can be found from [7]. These results can be

applied to the beamformer convergence for fixed receive fil-

ters. However, as the sum MSE minimization problem is, in

general, non-convex (see [14] for convexity conditions), the

receive filter update (4) requires extended analysis. Rough

convergence conditions can be derived by noting that the re-

ceive filter update strictly improves the objective value. Now,

such conditions for ρ can derived that, after each full iteration,

Algorithm 1 moves towards a stationary point of (3).

Algorithm 1 ADMM algorithm for MSE minimization

1: UE: Initialize receive filters gk = 1 ∀ k ∈ K.

2: BS: Initialize the variables s̄nk,i = 0 and dual variables

λ̄n
k,i = 0 for all (k, i) ∈ K ×K.

3: repeat

4: UE: Inform each BS of the downlink effective channels

by uplink pilots.

5: BS: Update the local beamformers from (12).

6: UE: Obtain local effective CSI from the downlink de-

modulation pilots.

7: UE: Report back the average combined signals
1

|Bi|

∑

b∈Bi
gkh

T
b,kmb,i ∀ (k, i) ∈ K × K for the serv-

ing set of BSs (K complex symbols per UE).

8: BS: Locally update the variables s̄k,i and dual variables

λ̄k,i from (13) and (11) according to the average signal

feedback from UEs.

9: UE: Update the receive filters gk ∀ k ∈ K from (4).

10: until Desired level of convergence has been reached.

5. NUMERICAL EXAMPLES

Simulations are carried out with B = 3 cooperating BSs

each equipped with NT = 2 transmit antennas. There are

K = 8 single-antenna users who are served simultaneously

by all BSs, that is, B1 = B2 = B3 = K. This is a spatially

overloaded scenario with more initially active beamformers

than degrees-of-freedom. The signal-to-noise ratio (SNR) for

all users is 15dB. Channel realizations are drawn from circu-

larly symmetric Gaussian distribution with unit variance. We

consider cell edge scenario, where all users have are located

equally far from all serving BSs. The results are averaged

over 100 independent channel realizations.

The non-coherent beamformer optimization provides a

lower bound for the achievable MSE, in which, each BS op-

timizes the beamformers according to the MSE by treating

all signals from other BSs as noise. Joint optimization gives

a reference point, where beamformers are optimized with

global CSI knowledge (still alternating the receive filter and

transmit beamformers).

In Fig. 1, the convergence in terms of the achieved aver-

age sum MSE is illustrated on logarithmic scale. The direct

parallel design provides the best performance for the first few

iterations. However, the ADMM method provides improved

convergence properties and intersects with the parallel meth-

ods after the first few iterations. The parallel design without

smoothing fails to converge in some cases, which results in

a gap to the achievable performance. From the non-coherent

beamforming results, it can be seen that coherent beamform-

ing can achieve significantly improved system performance.
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Iteration
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Fig. 1. Sum MSE convergence at SNR = 15dB, B = 3, NT =
2, K = 8 and ρ = 2.

6. CONCLUSIONS

We proposed decentralized beamforming methods with lim-

ited backhaul signaling for downlink CoMP MISO transmis-

sion. The system performance was optimized in terms of sum

MSE. Low complexity direct parallel updates were observed

to provide improved initial rate of convergence. For improved

stability, a smoothing step was proposed after each beam-

former update. To overcome the stability issues, the ADMM

technique was proposed with identical signaling requirements

and improved convergence properties for systems with more

than two cooperating BSs. Trade-off between the signaling

overhead and system performance is left for future study.
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