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ABSTRACT

Ionospheric information is required when estimating tar-
get parameters in skywave over-the-horizon (OTH) radar. Un-
like the traditional OTH radar which uses only the measure-
ments of ionospheric parameters obtained from an ionosonde
to estimate the target parameters, the multiple-input multiple-
output skywave OTH (MIMO-OTH) radar studied in this pa-
per estimates the ionospheric and target parameters jointly by
exploiting the data received by both the ionosonde and the
radar receivers. Two scenarios where the prior distribution of
the ionospheric parameters is either known or unknown are
considered. For the case when ionospheric parameter prior
distribution is unknown, the joint maximum likelihood (JML)
estimator is investigated and the Cramér-Rao bound (CRB)
is derived. For the case when the ionospheric parameter prior
distribution is known, the hybrid maximum likelihood and the
maximum a posteriori (ML/MAP) estimator is studied and the
hybrid Cramér-Rao bound (HCRB) is developed.

Index Terms— MIMO-OTH radar, joint estimation,
ionospheric parameters, target parameters.

1. INTRODUCTION

Sky wave over-the-horizon (OTH) radar operates in 3-30MHz,
which can provide over the horizon detection of targets in
large surveillance areas [1]. In recent years, multiple-input
multiple-output (MIMO) radar techniques [2–7] have been
applied to the OTH radar. In [8], a novel technique is devel-
oped for altitude estimation of a maneuvering target using a
MIMO-OTH radar. The clutter mitigation performance of a
MIMO-OTH radar is analyzed in [9].

In OTH radar, the non-stationary ionosphere helps deter-
mine the propagation paths for both transmitted and backscat-
tered signals. Further, the performance of an OTH radar great-
ly depends on the accuracy with which the system knows
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the ionospheric parameters. The ionospheric parameters are
usually estimated using an ionosonde [10]. Traditional OTH
radar takes the estimated ionospheric parameters as known
quantities and uses them for target parameter estimation [11–
15]. Estimation errors of the ionospheric parameters intro-
duced by the ionosonde can dramatically degrade the target
parameter estimation performance of the OTH radar system.
Actually, since both the transmitted and backscattered signals
of OTH radar traverse through the ionosphere, the received
signals should carry abundant information about the state of
the ionosphere. The use of this information can improve the
accuracy of target estimation.

In this paper, MIMO-OTH radar is employed to estimate
the ionospheric and target parameters jointly, using the mea-
surements from both the ionosonde and the radar system.
The optimum estimators are presented for the cases where
the ionospheric parameters have either a known and unknown
prior distribution and the corresponding performance bounds
are derived.

2. SIGNAL MODEL

Consider a MIMO-OTH radar with M transmitters and N
receivers in a two-dimensional Cartesian space. The com-
plex envelop of the signal transmitted by the mth trans-
mitter is

√
Emsm(t), where Em is the transmitted energy

and sm(t),m = 1, . . . ,M , are a set of unit energy wave-
forms which are approximately orthogonal for any time
delay τ and Doppler shift fd of interest [7], such that∫
Tr
sm(t)s∗m′(t− τ)ej2πfdtdt equals 1 for m = m′ and 0

for m 6= m′ and integration is taken over a pulse repetition
interval Tr. For simplicity the flat-earth model is adopted.
The positions of the mth transmitter and the nth receiver are
denoted by (xTm, 0) and (xRn , 0), respectively1. Suppose a
target is moving with constant velocity v along the x-axis
and its initial position is (x, 0), where x and v are assumed
to be deterministic but unknown. We use a parabolic layer
model [10] to describe the characteristics of the ionosphere,
in which the electron density at height2 y is given by

1For simplicity, we assume the antennas and target are on a line but gen-
eralization is straightforward.

2Throughout this paper, “height” means height above the ground.
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d(y) =

{
f2o
80.6

[1− ( y−yo
a

)
2
]

0

|y − yo| < a
otherwise

(1)

where yo denotes the height of the ionosphere with maximum
electron density, fo denotes the critical frequency, a = yo−yb
is the semi-layer thickness, and yb is the base height of the
ionospheric layer. The ionospheric parameters yo, yb, and fo
are assumed to be unknown. Denote the vector composed of
all the unknown parameters as

θ = [x, v, yo, yb, fo]
T = [φT ,ψT ]T (2)

whereφ = [x, v]T contains all the unknown target parameter-
s and ψ = [yo, yb, fo]

T contains all the unknown ionospheric
parameters. We break up time into intervals of duration Tr
and associate the kth interval with the slow time index k. De-
note the signal at the output of the matched filter (matched to
sm(t)) at the nth receiver due to the transmission of the mth
transmitter at slow time k by rmn(k). Collect signals from K
consecutive slow times in a column vector3

rmn = [rmn(1), · · · , rmn(K)]T

=
√
EmαmnTmn(θ) +wmn

(3)

where αmn is the target reflection coefficient of the mnth
path which is assumed to be a zero-mean complex Gaussian
random variable with known variance σ2

mn. Assume that the
target reflection coefficients for different paths are statistical-
ly independent of each other and remain approximately con-
stant over the observation interval. The noise vector wmn =
[wmn(1), · · · , wmn(K)]T in (3) is assumed to be zero-mean
complex Gaussian and E(wmn(k)w∗mn(k′)) = σ2δ(k − k′),
where δ(k) is a unit impulse function. Assume that the noise
components wmn for different mn are independent, and that
the target reflection coefficients and the noise are mutually
independent. The term Tmn(θ) in (3) is given by

Tmn(θ) = [ej2πϕmn(θ,1), · · · , ej2πϕmn(θ,K)]T (4)

where ϕmn(θ, k) = −fmτmn(θ, k) and fm is the carrier fre-
quency of the signal transmitted at transmitter m. The time
delay τmn(θ, k) corresponding to the mnth path is given by
τmn(θ, k) = PFm(θ, k)/c+ PBn (θ, k)/c where c denotes the
velocity of light and PFm(θ, k) denotes the group path length
[16] between themth transmitter and the target obtained from
the parabolic layer modeled (1) [16], which is

PFm(θ, k) =
2yb

sinβFm(θ, k)
+ ab ln

1 + b sinβFm(θ, k)

1− b sinβFm(θ, k)
(5)

with b = fm/fo and βFm(θ, k) denoting the transmitting ele-
vation angle which, according to the Breit-Tuve theorem [10],
should satisfy

2yb
sinβFm(θ, k)

+ab ln
1 + b sinβFm(θ, k)

1− b sinβFm(θ, k)
=
x+ vkTr − xTm
cosβFm(θ, k)

. (6)

The group path PBn (θ, k) between the nth receiver and the
target can be derived in a similar way by replacing βFm(θ, k)

3Note that clutter is not included in the signal model, considering that
they can be eliminated in the preprocessing.

and xTm with βBn (θ, k) and xRn in (5) and (6), where βBn (θ, k)
denotes the receiving elevation angle. For later use, we define
a KMN × 1 column vector

r=[rT11, r
T
12, · · · , rT1N , rT21, · · · , rTMN ]T (7)

to stack the received signals from all paths.

3. JOINT ESTIMATION OF IONOSPHERIC AND
TARGET PARAMETERS

Different from the conventional OTH radars, where the iono-
spheric parameters are estimated by the ionosonde indepen-
dently and then passed to the OTH radar as known quanti-
ties for estimating target parameters, this section consider-
s MIMO-OTH radar and estimates the ionospheric and tar-
get parameters jointly using the measurements obtained from
both the ionosonde and the radar. The joint estimator is first
derived for the case where the prior distribution of the iono-
spheric parameters is either known or unknown.

3.1. Estimation With Unknown Ionospheric Parameter
Distribution
For the joint estimators, both the output of the ionosonde and
the MIMO-OTH radar received signal vector in (7) are used
as our measurements. Denote the ionosonde output by ψ̂, an
estimate of the ionospheric parameter vector ψ, which can be
expressed as

ψ̂ = ψ +wψ̂ (8)

where wψ̂ = ψ̂ − ψ denotes the ionosonde measurement
error, which is assumed to be zero-mean Gaussian distributed
with known variance V .

When the prior distribution of the ionospheric parameter-
s is unknown, the unknown parameter vector is deterministic
unknown. Under the assumption that wmn, αmn in (3), and
wψ̂ in (8) are independent of each other, the likelihood func-
tion can be written as

p(r, ψ̂|θ) = p(r|ψ̂,θ)p(ψ̂|θ) = p (r|θ) p(ψ̂|ψ). (9)

where, from (3) and (7),

p (r|θ) =

M∏
m=1

N∏
n=1

p (rmn|θ) (10)

in which
p (rmn|θ) =

1

det (πCmn (θ))
e−r

H
mnC

−1
mn(θ)rmn ,

Cmn (θ) = σ2I + Emσ
2
mnTmn (θ)THmn (θ) ,

C−1mn (θ) =
1

σ2
I − Emσ

2
mn

σ2 (σ2 +KEmσ2
mn)

Tmn (θ)THmn (θ) ,

det(Cmn(θ)) = σ2K(1 +KEmσ
2
mn/σ

2),

and

p(ψ̂|ψ) =
1√

det(2πV )
e−

1
2 (ψ̂−ψ)TV −1(ψ̂−ψ). (11)
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Thus, the joint maximum likelihood (JML) estimator is

θ̂JML =argmax
θ

ln p(r, ψ̂|θ)

= argmax
θ

M∑
m=1

N∑
n=1

Emσ
2
mn

σ2 (σ2 +KEmσ2
mn)

∣∣∣rHmnTmn (θ)∣∣∣2
− 1

2
(ψ̂ −ψ)TV −1(ψ̂ −ψ). (12)

3.2. Estimation With Known Ionospheric Parameter Dis-
tribution

Here we consider the scenario when the prior statistical in-
formation of the ionospheric parameters is available. Assume
that the ionospheric parameter vector ψ is known to have a
Gaussian prior distribution with mean µ and covariance Σ,
such that

p(ψ) =
1√

det (2πΣ)
e−

1
2 (ψ−µ)

T Σ−1(ψ−µ). (13)

In this case, the unknown parameter vector θ to be estimat-
ed is composed of both random unknowns and deterministic
unknowns, so the hybrid maximum likelihood and maximum
a posteriori (ML/MAP) method [17] is employed to estimate
θ. Considering that the observations r and ψ̂ are independent
with each other, the joint probability density function (pdf)
can be written as
p(r, ψ̂,ψ;φ) = p(r, ψ̂|ψ;φ)p(ψ;φ) = p (r|θ) p(ψ̂|ψ)p (ψ) .

Therefore, using (10), (11) and (13), the hybrid ML/MAP es-
timation can be obtained as

θ̂HB = [φ̂TML, ψ̂
T
MAP ]

T = argmax
θ

ln p
(
r,φ, ψ̂;φ

)
= argmax

θ

M∑
m=1

N∑
n=1

Emσ
2
mn

σ2 (σ2 +KEmσ2
mn)

∣∣∣rHmnTmn (θ)∣∣∣2 (14)

− 1

2
(ψ̂ −ψ)TV −1(ψ̂ −ψ)− 1

2
(ψ − µ)TΣ−1(ψ − µ).

4. JOINT ESTIMATION BOUNDS

This section derives performance bounds for the joint esti-
mation with unknown or known prior ionospheric parameter
distribution.

4.1. CRB for Unknown Ionospheric Parameter Distribu-
tion Case
When the prior distribution of the ionospheric parameters is
unavailable, the mean square error (MSE) of the joint estima-
tion of the deterministic unknown parameter vector is lower
bounded by the Cramer-Rao bound (CRB) [18]. The CRB e-
quals to the inverse of Fisher information matrix (FIM). From
(9), it can be derived that the FIM for the joint estimation is

JF (θ) = JS(θ) + JI , (15)

where JI describes the contribution of the ionosonde,

JI = Eψ̂|ψ
{
∇θ ln p(ψ̂|ψ)[∇θ ln p(ψ̂|ψ)]T

}
=

[
0 0
0 V −1

]
,

and JS(θ) describes the contribution of the radar received
data,

JS(θ) = Er|θ{[∇θ ln p(r|θ)][∇θ ln p(r|θ)]T }

=

M∑
m=1

N∑
n=1

Jmn(θ),
(16)

the ijth element of Jmn(θ) is given by

[Jmn (θ)]ij =
8π2E2

mσ
4
mn

σ2 (σ2 +KEmσ2
mn)

×
(
K
∂ϕHmn
∂θi

∂ϕmn
∂θj

− 11×K
∂ϕmn
∂θi

11×K
∂ϕmn
∂θj

)
in which 11×K denotes a 1×K vector of all ones, ϕmn =

[ϕmn (θ, 1) , · · · , ϕmn (θ,K)]
T and

∂ϕmn
∂θi

=

[
∂ϕmn(θ, 1)

∂θi
, · · · , ∂ϕmn(θ,K)

∂θi

]T
, (17)

∂ϕmn (θ, k)

∂θi
= −fm

c

(
∂PFm (θ, k)

∂θi
+
∂PBn (θ, k)

∂θi

)
. (18)

From (2) and (5), the first term inside the bracket of (18) is,
for i = 1, ..., 5,

∂PFm (θ, k)

∂θi
= ηFm,i + εFm

∂βFm (θ, k)

∂θi
, (19)

where ηFm,1 = ηFm,2 = 0, ηFm,3 = b ln
1+b sin βF

m(θ,k)
1−b sin βF

m(θ,k)
,

ηFm,4 =
2

sinβFm (θ, k)
− ηFm,3,

ηFm,5 = − a

fo
ηFm,3 −

2ab2 sinβFm (θ, k)

fo(1− b2sin2βFm (θ, k))
,

εFm = −2yb cosβFm (θ, k)

sin2βFm (θ, k)
+

2ab2 cosβFm (θ, k)

1− b2sin2βFm (θ, k)
.

The last term on the right hand side of (19) can be computed
by taking the derivative with respect to θi on both sides of (6),
which is ∂βFm (θ, k)

∂θi
=
ηFm,i − κFm,i
νFm − εFm

(20)

where νFm = (x+ vkTr − xTm)tanβFm(θ, k)secβFm(θ, k),

κFm,i =


secβFm (θ, k) i = 1

kTr secβ
F
m (θ, k) i = 2
0 i = 3, 4, 5

. (21)

Similarly, we can derive ∂PBm (θ, k)/∂θi. Substituting the
above expressions and (16) into (15), we can obtain the FIM
JF (θ). The CRB of θi, the ith element of θ, can be calculat-
ed as

CRB(θi) = [J−1F (θ)]ii, i = 1, · · · , 5. (22)

4.2. HCRB for Known Ionospheric Parameter Distribu-
tion Case
For the case where the prior distribution of the ionospheric
parameters is available, the MSE of the joint estimation of
the partially random and partially deterministic unknown pa-
rameter vector is lower bounded by the hybrid CRB (HCRB),
which is the inverse of the hybrid information matrix [18]
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JHB = JM + JP , (23)

where JP is determined by the ionospheric parameter prior
distribution,

JP =

[
0 0
0 Σ−1

]
, (24)

and JM describes the contribution of the measured data,

JM = Eψ {JF (θ)} = Eψ {JS (θ)}+ JI , (25)

in which JS (θ) and JI are defined in (15). Therefore, taking
the inverse of JHB , the HCRB associated with the estimate
of θi can be obtained as

HCRBi =
[
J−1HB

]
ii
, i = 1, · · · , 5. (26)

5. NUMERICAL RESULTS

Consider a MIMO-OTH radar system with M = 3 transmit-
ters and N = 3 receivers located at (0, 0), (1, 0), (2, 0)km
and (3, 0), (4, 0), (5, 0)km, respectively. The carrier frequen-
cies of the transmitted signals are set to 5, 10 and 15MHz.
Assume Tr = 0.02s, K = 500 and Em = E = 1. The
variances of target reflection coefficients are σ2

mn = σ2
α = 1.

The signal to noise ratio (SNR) is defined as SNR= Eσ2
α/σ

2.
Without loss of generality and to reduce simulation load, as-
sume that yb, fo, and v in θ are known to be 110km, 4MHz,
and 20m/s respectively, so that only the ionospheric height
yo and the target position x need to be estimated.

1) Examples for Unknown Ionospheric Parameter Distri-
bution: Assume that the true values of the unknown parame-
ters are yo = 150km and x = 1500km. In Figs.1(a) and 1(b),
the MSEs of the JML estimates of yo and x are plotted versus
SNR, respectively. In both figures, we see that the curves for
V = 10 are higher than the ones for V = 1, which implies
that smaller V leads to better MSE performance, as expect-
ed. It is observed that the MSEs of the JML estimation are
close to the CRBs, which verifies the correctness of the CRB
derivation in Section 4.1. For comparison, in the same figures
we also plot the MSEs obtained using the traditional estima-
tion method (TEM), where the estimate ŷo of yo is calculated
by the ionosonde solely and then passed to the OTH radar
which takes this estimated value as if it were the true value to
further estimate x. In this case the variance of the TEM for yo
is exactly equal to the error variance V (see the curves marked
with squares in Fig.1(a)). In Fig.1(b), we find that the MSE of
JML is smaller than that of TEM for all SNRs, which shows
that the joint estimation is always superior to the non-joint es-
timation in the statistical sense. It is also seen that when the
SNR is small, the MSE of TEM is close to the MSE of JML,
but when the SNR exceeds a threshold (see arrows in the fig-
ures) the MSE of TEM is approximately constant and the gap
between the MSE of TEM and MSE/CRB of JML increases
with the increasing SNR. Intuitively, in the traditional OTH
radars, the estimation error of ŷo is totally determined by the
ionosonde, which cannot be improved even if the SNR of the
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Fig. 1. MSE of JML and TEM.
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Fig. 2. MSE of PTEM and ML/MAP.

radar received signals is large (see Fig.1(a)), and thus limits
the estimation accuracy of x. The JML estimation makes use
of the received signals for the estimation of yo and x, which
enables the improvement of the estimation accuracy for both
yo and x when the SNR becomes larger.

2) Examples for Known Ionospheric Parameter Distribu-
tion: Assume the prior distribution of the ionospheric param-
eter yo is known to be Gaussian with mean µ = 150km and
variance Σ = 10km2, such that the MIMO-OTH radar can
use this prior distribution for parameter estimation. The M-
SEs of the estimates obtained from the proposed joint esti-
mation (ML/MAP) are plotted versus SNR in Figs.2(a) and
2(b). The MSE curves obtained using the traditional method-
s (PTEM) are also provided for comparison. It is seen that
the MSEs of ML/MAP estimation are close to the HCRBs,
which verifies the correctness of the HCRB derivation in Sec-
tion 4.2. Again, the solid curve for V = 10 it above the ones
for V = 1, which indicates that smaller V leads to better MSE
performance. It is observed that the proposed method always
performs better than the tradition method. The performance
gain is insignificant when the SNR is small, whereas as the
SNR increases and exceeds a threshold the performance gain
of the joint estimation is dramatic.

6. CONCLUSION

Joint estimation of the ionospheric and target parameters was
studied for MIMO-OTH radar. We presented JML and M-
L/MAP joint estimation for two scenarios where prior distri-
bution of ionospheric parameters is either known or unknown,
respectively. The CRB and HCRB associated with known and
unknown prior distribution cases were developed. The sim-
ulation results showed that the proposed joint methods can
improve the estimation accuracy of the target parameters via
more effective usage of the radar received signals.
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