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ABSTRACT
Post-processing methods can be used in mobile communications to
improve the intelligibility of speech in adverse background noise
conditions. This study addresses the improved intelligibility and
the speech quality achieved with a well-known approach, dynamic
range compression, by comparing it to two other real-time post-
processing methods based on energy reallocation. In addition, the
effects of utilizing amplitude normalization instead of energy nor-
malization on the performance of the post-processing methods are
investigated. The evaluations were conducted using subjective tests
in several background noise conditions. The results indicate that
the two energy reallocating approaches outperform dynamic range
compression both in intelligibility and quality and that amplitude
normalization causes the performance of the tested post-processing
methods to degrade in some conditions.

Index Terms— Post-processing, dynamic range compression,
telephone speech, narrowband speech, normalization

1. INTRODUCTION

Today, mobile phones are used in increasingly difficult background
noise conditions, such as in train stations, restaurants and cars. Fur-
thermore, the corrupting noise in such conditions may be in the send-
ing or receiving side of the channel, referred to as far-end and near-
end noise, respectively. To improve communication in noisy condi-
tions, post-processing can be used in the receiving mobile device to
enhance the intelligibility of speech. This study is focused on the
near-end noise case which means that the decoded speech signal is
clean and it is processed to stand out over the environmental noise in
the listener’s surroundings.

Several intelligibility enhancement methods have been devel-
oped for near-end noise scenarios and many of them are based on
the optimization of objective measures which are known to corre-
late with subjective intelligibility. For instance, in [1], optimal gains
for the sub-bands of the unprocessed speech signal were determined
by maximizing the speech intelligibility index (SII) with constrained
audio power. This work was further enhanced by modifying the opti-
mization [2] and combining it with adaptive dynamic range compres-
sion (DRC) [3]. In [4], frequency regions with low signal-to-noise
ratios (SNRs) were enhanced and this work was extended in [5] to
different noise types utilizing offline optimization with the glimpse
proportion (GP) measure.

Post-filtering, where an adaptive filter is used to reallocate en-
ergy in frequency, can also be utilized for intelligibility enhance-
ment. Traditionally, post-filtering has been employed in improving
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the perceptual quality by utilizing a filter that emphasizes spectral
peaks and attenuates spectral valleys [6, 7]. Alternatively, the tra-
ditional post-filter may be replaced with a high-pass type filter that
effectively attenuates the low frequencies and enhances the high fre-
quencies, resulting in increased speech intelligibility ([8, 9, 10, 11]).

More sophisticated post-filtering algorithms emulate phenom-
ena that occur naturally when humans are trying to overcome com-
munication barriers. Such phenomena include, e.g., the Lombard
effect which is observed when talkers modify their speaking style
in an effort to make speech more intelligible in the presence of
background noise [12]. It consists of multiple modifications to
the speech signal, such as increased vocal intensity, fundamental
frequency (F0), formant frequencies, and word durations, and de-
creased spectral tilt. In [13], energy reallocation was utilized to
transfer energy from voiced sounds to unvoiced utterances. In [14],
adaptive spectral shaping, aimed at sharpening the formants and re-
ducing the spectral tilt, was combined with DRC. The approach was
shown to improve both objective and subjective intelligibility but
is partially based on long-term energy normalization which is not
suitable for real-time processing. In [15], the spectral tilt reduction
and formant sharpening were combined in a post-filtering method
that was shown to improve intelligibility in various noise conditions.

Dynamic range compression is used in audio recording and
broadcasting [16], digital hearing aids [17], and mobile phones [18]
for fitting the audio into a smaller dynamic range. The reduc-
tion is done by amplifying low intensity sounds more than loud
sounds [17] which can also be utilized for intelligibility enhance-
ment of speech for normal-hearing listeners because it effectively
amplifies unvoiced sounds, similarly as in [13]. However, DRC can
cause distortion thus disrupting the quality of the speech signal [17].

The performance of intelligibility enhancement algorithms is
also affected by the normalization which is done after the processing,
usually in terms of energy. In post-filtering, normalization is partic-
ularly important in order to achieve the energy reallocation from low
to high frequencies which is the main cause of the intelligibility gain.
Several studies focused on the enhancement of speech off-line uti-
lize long-term energy constraints, such as energy normalization over
a sentence of speech ([19, 14, 20]) which allows the energy to be
moved from one section of speech to another. This approach, how-
ever, is not applicable in a real-time system, such as a mobile phone,
where frame-based normalization with small delay has to be used.
Usually, energy is used as a constraint but considering the restric-
tions set by the mobile device, i.e., the maximum amplitude of the
signal is constrained by the amplifier, an amplitude constraint could
be a more realistic choice.

The purpose of this study was (1) to compare, in a subjective test,
three previously proposed post-processing methods, DRC and two
post-filtering algorithms, which are realistically implementable in
mobile devices and which, to the best knowledge of the authors, have
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Fig. 1. The long-term average spectra of unprocessed speech and the
methods under evaluation (DRC without normalization and the FE
and LM post-filters with energy and amplitude normalizations which
are denoted by letters e and a, respectively). The spectra have been
computed by averaging over all the male speakers in the database
used in the study.

not been evaluated jointly in subjective tests previously. The subjec-
tive performance evaluation contained both an intelligibility test as
well as a quality test which was conducted to study the possible dis-
tortions caused by the DRC. A further goal of the study was (2) to
evaluate the effects of two frame-based normalization methods, en-
ergy and amplitude, on the performance of the different post-filtering
methods. The tests were conducted with narrowband speech because
it is still prevalent in mobile communications even though wideband
speech transmission is becoming increasingly popular. Additionally,
intelligibility enhancement is more important for narrowband speech
which has fewer speech cues and is thus more severely affected by
environmental noise.

2. EVALUATED ALGORITHMS

Three different intelligibility enhancement methods were selected
for evaluation: dynamic range compression (DRC) and two post-
filtering approaches, the formant equalizing post-filter (FE) and the
Lombard-motivated post-filter (LM). The chosen algorithms utilize
different techniques that have been shown to improve intelligibility
efficiently in previous studies and all of the methods operate with
low delay and low computational complexity which makes them im-
plementable in a mobile phone.

DRC reduces the peak-to-average ratio and controls the maxi-
mum amplitude of speech whereas both of the post-filtering algo-
rithms are based on energy reallocation from low to high frequen-
cies. Therefore, DRC can be considered as an amplitude normal-
ization method and thus, can be used without additional normaliza-
tion, but the post-filtering approaches require a level adjustment after
the processing. The long-term average spectra (LTAS) of the eval-
uated algorithms with the different normalization methods used are
shown in Fig. 1. In Table 1, the average energies of the different
post-processing methods with different normalizations are shown.

2.1. DRC

The DRC method utilized is based on [14] where the authors use
a sentence level energy normalization after the compression. How-
ever, for the purposes of the current study, the method was adapted
to real-time processing by implementing it in frame-based form. In
the original study, frame-based processing was used only to compute
the envelope of the original sample with different frame lengths for

Table 1. The root-mean-square (RMS) energies for DRC without
normalization and for the FE and LM post-filters with energy and
amplitude normalizations (denoted by letters e and a, respectively).
The values are averages over the speech database used in the study
normalized with the energy of unprocessed speech.

DRC FEe FEa LMe LMa

Male 1.17 1.0 0.94 1.0 0.97
±0.07 ±0.0 ±0.03 ±0.0 ±0.05

Female 1.16 1.0 0.98 1.0 0.93
±0.07 ±0.0 ±0.02 ±0.0 ±0.04

male and female speakers. The frame length used in this study was
selected as a compromise between these and was set to 15 ms.

The compression is done in two stages: a dynamic stage and a
static stage. In the dynamic stage, the estimated envelope of the sig-
nal is smoothed utilizing attack and release time constants adapted
to the lower sampling rate of 8 kHz from 16 kHz using the definition
given in [21]. In the static stage, a time varying gain is determined
based on the decibel value of the smoothed envelope and the input-
output envelope characteristic function. The 0 dB reference level
needed to determine the decibel value of the envelope was set to
30% of the maximum envelope of the speech database used in the
current study.

2.2. FE post-filter

The FE method was introduced by Hall et al. [9]. The algorithm
utilizes a fixed high-pass filter which was derived by inverting the
average amplitudes of the first two formants measured from adult
male speakers. The resulting filter attenuates the frequency range
around the first formant with maximum attenuation near 360 Hz.
The filter was originally intended for wideband speech with a 22.05-
kHz sampling frequency but it was modified for narrowband speech
using the z transform given in the original paper [9].

2.3. LM post-filter

The LM post-filter was introduced in [11]. The algorithm aims at
modelling spectral changes observed in natural Lombard speech
and consists of three parts: spectral tilt compensation with a linear
prediction (LP) based approach, formant sharpening, and noise-
adaptive high-pass filtering. In the original study, energy normal-
ization was utilized as the final block of the algorithm but for the
purposes of this study it was removed.

The first two parts of the algorithm were used directly with pa-
rameter values found in the original study [11]. However, the deter-
mination of the parameter controlling the smoothing of the high-pass
filter depending on the noise was simplified. It was set such that there
was no smoothing in severe noise conditions and some smoothing in
moderate noise conditions.

3. NORMALIZATION METHODS

Normalization is utilized after the post-processing to control the
level of the processed signal. This is especially important with post-
filtering where the signal is usually attenuated by the filtering. In
frame-based normalization the processed frame is equalized to the
level of the original frame in terms of a specific measure. For energy
normalization, the measure is the energy of the frame whereas for
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Fig. 2. Results of the intelligibility test (a) for male and female speakers averaged over all noise conditions and (b) averaged over speakers
for car and factory noise with moderate and severe noise levels (moderate: car −5 dB, factory 0 dB, severe: car −10 dB, factory −5 dB).
The methods under comparison were unprocessed speech (UN), dynamic range compression without normalization (DRC), the formant
equalizing post-filter with energy (FEe) and amplitude (FEa) normalization as well as the Lombard-motivated post-filter with energy (LMe)
and amplitude (LMa) normalization.

amplitude normalization, it is the maximum amplitude. The two nor-
malization methods are conceptually very different but in practice
the difference is small as can be seen from Fig. 1 and Table 1.

3.1. Energy normalization

The energy normalization is the adaptive gain control (AGC) of the
adaptive multi-rate (AMR) speech codec [22] with non-overlapping
frames of 10 ms. First, a gain factor, γE, is computed for the present
frame and it is updated sample-by-sample with βE(n) = αEβE(n−
1)+ (1−αE)γE, where βE(n) is the final scaling factor for sample
n and αE = 0.9 as in [22].

3.2. Amplitude normalization

For the amplitude normalization, 10 ms frames are used. First, the
maximum amplitude of the processed signal is compared with the
original signal and a scaling factor is determined. Similarly with
the energy normalization, each sample is then multiplied with an up-
dated scaling factor βA(n) = αAβA(n− 1) + (1− αA)γA, where
γA is the original amplitude scaling factor for the frame and αA was
chosen to be 0.9. The value of αA is based on informal listening
where amplitude scaling was done after compression type process-
ing. The selected value provided a smooth transition between frames
without audible distortion.

4. SUBJECTIVE EVALUATION

A subjective test was conducted to evaluate the performances of the
different post-processing and normalization methods. The test con-
sisted of two parts: an intelligibility evaluation, a word-error rate
(WER) test, followed by a pair comparison test with questions on
overall quality and listening preference. In the WER test, clean
speech was corrupted with two types of additive noise (stationary car
noise and unstationary factory noise [23]) each with two SNR lev-
els which were selected based on informal listening to create noise
conditions characterized as moderate, and severe. The SNR levels
for car noise were −5 dB and −10 dB and for factory noise 0 dB
and −5 dB. The methods under evaluation in the WER test were un-
processed speech (UN), DRC without normalization (DRC) and the

FE and LM post-filters with energy (FEe and LMe, respectively) and
amplitude normalizations (FEa and LMa, respectively). For the pair
comparison test, the methods had to be normalized to make compar-
ison possible. Therefore, the post-processing methods (DRC, FE,
and LM) were all used with energy normalization which was done
with SV56 [24, 25].

The speech material consisted of phonetically balanced sentence
material from two male and two female speakers which has been cal-
ibrated in terms of intelligibility in a previous study [26]. The speech
material developed in [26] consists of meaningful sentences both in
Finnish and English but for the present study only the Finnish mate-
rial was used. The sentences contained 4-5 words and had an average
duration of approximately 2 seconds. All speech samples were first
downsampled to 16 kHz, filtered with the MSIN filter [24] to simu-
late mobile station input characteristics, downsampled to 8 kHz and
AMR encoded and decoded [27]. After this, the samples were equal-
ized to −26 dBov with SV56 [24, 25], processed with one of the
methods (DRC, FE, LM), and normalized using amplitude or energy
normalization. Finally, car or factory noise was added according to
the noise condition.

12 normal-hearing listeners, all native speakers of Finnish, par-
ticipated in the listening tests. The tests took place in a sound-
proofed listening booth with Sennheiser HD 650 headphones. The
test was divided into two parts and a short practice session preceded
each part. During the practice, the listeners were able to adjust the
volume to a comfortable listening level. For the test, the volume
setting was kept constant.

In the WER test, the subjects were allowed to play each sample
only once after which they typed the sentence on the computer. The
percentage of correct words was computed by scoring the stems and
suffices of inflected words separately after obvious spelling errors
had been corrected. In the pair comparison test, the listeners were
able to freely listen to two samples, A and B, and were asked to
answer the following questions:

Q1: Which sample is of better quality?
Q2: Which sample would you prefer to listen to?

They could answer by selecting one of the options: A, B or No dif-
ference and were instructed to select No difference if they had no
preference even if they heard a difference between the samples.
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Table 2. Pairwise comparison between methods in terms of overall
quality (Q1) and listening preference (Q2). The methods have all
been normalized with SV56 [24, 25] to make comparison possible.
Only pairs with statistically significant differences are shown. The
preferred method is highlighted with the letters in boldface.

Speaker Comparison W p

Q1

Male

UN-DRC -5.02 0.00
DRC-FE 3.18 0.00
DRC-LM 2.90 0.00
FE-LM -3.81 0.01

Female

UN-DRC -5.61 0.00
UN-FE 3.20 0.00
DRC-FE 6.65 0.00
DRC-LM 6.93 0.00

Q2

Male
UN-DRC -5.02 0.00
UN-LM -3.18 0.00
FE-LM -2.54 0.01

Female
UN-DRC -5.86 0.00
DRC-FE 6.93 0.00
DRC-LM 4.63 0.00

The results of the WER test were analyzed with a five-way anal-
ysis of variance (ANOVA) procedure using 5% significance level.
The test subject was modelled as a random factor while the noise
type (car noise, factory noise), the SNR level (moderate, severe), the
method (UN, DRC, FEe, FEa, LMe, and LMa), and the speaker gen-
der (male, female) were modelled as fixed factors. The normality of
the residuals and the normality of the random effects were verified
using the one-sample Kolmogov-Smirnov test with the significance
level of 5%. The ANOVA indicated that the noise type [F(1,14) =
23.68, p < 0.001], the method [F(5,70) =30.60, p < 0.001], the SNR
level [F(1,14) = 724.00, p < 0.001], the speaker gender [F(1,14) =
140.10, p < 0.001] as well as the interactions between the noise type
and the method [F(5,70) = 5.76, p < 0.001], between the SNR level
and the method [F(5,70) = 4.36, p < 0.01], between the method and
the speaker gender [F(5,70) = 4.36, p < 0.01], and between the noise
type, the SNR level and the method [F(5,70) = 5.10, p < 0.01] had
a significant effect on the WER scores.

In order to gain more insight into the nature of the effects, the
marginal means and the 95% confidence intervals were computed,
and Dunnett’s T3 post-hoc test with the significance level of 5% was
applied to confirm the statistical significance of the findings. The
values shown in Fig. 2(a) illustrate that the WER scores were, on
average, slightly lower with male speakers. Additionally, the dif-
ference between UN and the other methods was larger with female
speakers. Moreover, LMe had a lower WER score than UN, DRC
and FEa with female speakers. The difference between LMe and
FEe failed to reach statistical significance.

On the other hand, the values shown in Fig. 2(b) illustrate that
the differences between the methods were, on average, larger in the
factory noise conditions, and that the decrease in SNR level resulted
in more pronounced differences between the methods as well as in
increased WER scores, on average. Interestingly, only LMe pro-
vides a better WER score than UN in all noise conditions. Further-
more, LMe performs also over the DRC and FEa in the severe factory
noise. The differences between LMe and FEe, and between LMe and
FEa in the severe car noise were not statistically significant.

The responses given in the pair comparison test were arranged

into preference matrices and the Bradley-Terry method was used to
fit generalized linear models to the data obtained. Thereafter, a two-
way ANOVA procedure was used to test the dependence of the pref-
erence score from the method-pair under comparison or from the
gender of the speaker. For Q1, the method-pair [χ2 = 100.22, d.f. =
3, p < 0.001], and the interaction between the method-pair and the
speaker gender [χ2 = 30.42, d.f. = 3, p < 0.001] had a significant
effect on whether one of the compared samples was chosen. The
same factors ([χ2 = 73.13, d.f. = 3, p < 0.001], and [χ2 = 24.71, d.f.
= 3, p < 0.001]) affected also Q2.

The pair comparisons were further analyzed in a pairwise man-
ner in order to obtain detailed knowledge on whether a particular
method was preferred significantly over another method. These anal-
yses were performed using Barnard’s exact test with the significance
level of 5%. Table 2 summarizes the results for the comparisons in
which one method was significantly preferred over the other. Inspec-
tion of the results reveals that UN was always preferred over DRC
both in terms of Q1 and Q2. Moreover, FE and LM were also always
preferred in terms of Q1 over DRC, although in terms of Q2, their
preferences over DRC were significant only with female speakers.
Interestingly, it seems that FE is preferred in terms of both Q1 and
Q2 over LM with male speakers, but not with female speakers. In
contrast, detailed inspection of the results revealed that the test sub-
jects had a tendency to prefer LM over FE when female speech was
used, but the preference failed to reach a statistical significance.

5. DISCUSSION

Dynamic range compression (DRC) was compared to two other
intelligibility-enhancing post-processing methods (FE and LM post-
filters) in a WER test with two noise types and multiple noise condi-
tions and in a pair comparison test with clean speech. Additionally,
two frame-based normalization methods, energy and amplitude nor-
malization, were utilized in the intelligibility test to evaluate their
impact on the performance of the post-processing algorithms.

The results of the WER test indicate that energy-normalized
LM-post-filter (LMe) was the only post-processing method that im-
proved the speech intelligibility compared to unprocessed speech
(UN) in all of the noise conditions. DRC, which in advance was
expected to provide the largest intelligibility increase because the
processed speech had on average much more energy, did not outper-
form the other methods. On the other hand, in the pair comparison
test, DRC was rated worse in almost all of the comparisons, in terms
of both overall quality and listening preference. The most likely rea-
son for this is that DRC contained distortions and lacked the clarity
provided by the other methods. Interestingly, FE was rated over LM
for both questions in the case of male speakers but there were no dif-
ferences for female speakers. This can be explained by noting that
the spectral tilt compensation in LM is based on LP which has dif-
ficulties in modelling speech with high F0 [28]. Therefore, the tilt
estimation likely follows the true envelope of the spectrum better for
male speakers leading to more efficient spectral tilt compensation at
high frequencies than in the case of female speakers.

Whether energy or amplitude normalization is used has a clear,
although not statistically significant, impact on the performance of
the two post-filtering methods. The results indicate that energy nor-
malization provides larger intelligibility gains even though the dif-
ference between the normalization methods in terms of RMS energy
of the processed speech is relatively small. Regardless, amplitude
normalization is a well-justified approach from a device perspective
and could be useful with post-processing methods that knowingly
take advantage of the different restriction in their design.
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