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ABSTRACT

This work presents an analysis of distant-talking speech recognition

in a variety of reverberant conditions, correlating ASR performance

to the acoustic characteristics of a given propagation channel. In

particular we show how, for a digit recognition task, the ASR accu-

racy is directly related to the Early-to-Late Reverberation ratio of the

room impulse response, capturing in a single parameter the reverber-

ation properties of a given channel independently of the setup. Con-

sequently, this measure can be successfully considered for acoustic

model training either selecting the most suitable model for a given

spatial configuration, or defining the subset of RIRs to be used for

the creation of multi-condition models. Experimental results on sim-

ulated data as well as on data generated with real impulse responses

support our claims.

Index Terms— distant ASR, reverberation, room impulse re-

sponse, direct-to-reverberant ratio, multi-condition training

1. INTRODUCTION

Distant speech recognition is progressively gaining major attention

since the usage of close-talking microphones is inconvenient or dif-

ficult in specific scenarios [1]. As a result, distant speech is usually

acquired by means of microphone arrays, which allow the imple-

mentation of selective spatial acquisition or other speech enhance-

ment techniques [2], but have a restricted view of the space of in-

terest. Alternately, networks of distributed microphones could be

employed guaranteeing a uniform acoustic coverage of the moni-

tored area independently of the source position and orientation. This

scenario is being investigated under the EU project DIRHA where a

vocal system for the control of home devices is targeted.

In such configurations the adoption of array-processing tech-

niques is often neither possible nor effective [3] and alternative ap-

proaches can be successfully applied, as for example channel selec-

tion [4] or source separation [5, 6]. It is well known that reverbera-

tion and background noise degrade speech recognition performance,

but few studies have investigated the relation between acoustic con-

ditions and recognition rates in a multi-microphone scenario, where

the speaker position is not constrained or known in advance. In-

deed, in this distributed setup, various spatial factors impact on the

signal quality: the distance and the orientation of the pair source-

microphone, the consequent different SNR, the acoustic propaga-

tion in the enclosure. Hence it is of interest to correlate ASR per-

formance with some purely acoustic measurements [7]. In [8], the
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authors proposed a temporal-domain method for predicting recogni-

tion performance in unseen noisy environments. This estimate can

be usefully exploited during setup to increase the robustness of the

resulting system, for example selecting or training a suitable acous-

tic model. Authors in [9] studied the harming parts of room impulse

responses, discussing the contribution of early and late reflections to

ASR performance while in [10] the inter-frame correlation of rever-

berant feature vectors is analyzed. In a related work the adjustments

of dereverberation algorithms to ASR systems are evaluated [11].

More recently the reverberation problem has been addressed from

different perspectives [12, 13, 14, 15] showing the need for effective

solutions to cope with the related masking effects.

This work presents an analysis of the correlation between the ac-

curacy of distant-talking speech recognition and the properties of the

acoustic channel. The main assumption is that the ASR performance

is directly related to the Early-to-Late Reverberation Ratio (ELR) of

the Room Impulse Response (RIR), whose correlation with speech

and music clarity has been already investigated [16]. In this way, we

can characterize the behavior of the ASR with a single parameter in

spite of the variety of acoustic conditions typical of a domestic sce-

nario, due to different room layouts, source positions, orientations

and directivity patterns. As a consequence we can introduce a crite-

rion for clustering the channels and designing suitable data contami-

nation strategies [17]. In [4, 18] similar metrics are adopted but their

correlation with the recognition performance is not investigated.

The paper is organized as follows: Section 2 introduces the prob-

lem of ASR in reverberation and presents the proposed RIR charac-

terization. The experimental framework is introduced in Section 3,

describing the data and the recognition task. Results are discussed

in Section 4 while Section 5 draws some conclusions.

2. ROOM ACOUSTIC AND ASR PERFORMANCE

In enclosures, acoustic waves propagate through multiple paths due

to the presence of reflecting surfaces (e.g. walls, furniture). This

results in the so-called reverberation that consists in multiple replicas

of the emitted signal reaching the microphone. The effects of the

enclosure acoustics are usually described through the convolution

between the RIR h and the clean speech signal s(t):

y(t) = h ∗ s(t) + η(t), (1)

where the RIR is assumed time-invariant, ∗ denotes convolution,

y(t) is the reverberated signal captured by the microphone and η(t)
is the environmental noise. Although it usually plays an equally cru-

cial role on ASR performance, addressing the environmental noise

is beyond the scope of this work and the term η(t) is neglected here-

after.
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It is often convenient to split the RIR into three parts [16], each

of them impacting on the emitted signal in different ways:

h(τ) = hd(τ) + he(τ) + hr(τ), (2)

where hd(τ) is the direct propagation path, he(τ) describes the early

arrivals up to some tens of ms and hr(τ) represents the late diffuse

reverberation typical of the RIR tail.

Early arrivals are in general not so harmful in speech recogni-

tion since ASR systems, similarly to the human auditory system,

typically benefit from the energy boost produced by replicas of the

same signal arriving at the microphone in a very limited time [9].

Conversely, the reverberation tail critically affects the ASR behav-

ior [10]: due to the time smearing, phonemes are mixed up with the

preceding sound, strongly degrading the decoding stage.

In the past, ASR performance in reverberant environments has

been mainly associated to the reverberation time T60 or to the dis-

tance between the source and the microphones [19, 20], keeping all

the other factors affecting the RIR fixed (source directivity and orien-

tation, room dimensions and wall absorption coefficients). Recently,

the Direct-to-Reverberant Ratio (DRR) has become a popular way to

measure the amount of distortion introduced by a given RIR, inde-

pendently of the specific environment and experimental setup. The

DRR measures the ratio between the energy propagating along the

direct path (i.e. without reflections) and the reverberant energy [21]:

DRR =

R

τ
hd(τ)2dτ

R

τ
(he(τ) + hr(τ))2dτ

(3)

The metric is mostly used in dereverberation or speech enhancement,

either to measure the performance or to characterize the experimen-

tal conditions. However, since the decoding step typically gets ben-

efit from early arrivals, we consider a different metric, as follows:

ELRT = 10 log
10

R

T

τ=0
h(τ)2dτ

R

∞

τ=T
h(τ)2dτ

(4)

where T determines the time instant when we split between early and

late arrival. Basically, it is a generalization of the clarity C80 used

to characterize the music transparency in concert halls [16]. Assum-

ing that the component due to the reverberation tail is uncorrelated

with the contribution due to the early arrivals and can be modeled as

additive noise, the proposed ELRT measure can be interpreted as a

sort of SNR. An equivalent metric, the definition D50 [16], was used

in [11] for a similar investigation (setting T = 50ms).

3. EXPERIMENTAL SETUP

The hypothesis that ELRT is an effective feature for predicting the

complexity of a reverberant speech recognition task is validated us-

ing two well-known corpora (TIDIGITS and TIMIT). The reverber-

ant material was created using both artificially generated and real

(measured) RIRs.

3.1. Real and Simulated Impulse Responses

Given a real apartment equipped with a large number of microphones

on walls and ceilings, whose map is sketched in Figure 1, a set

of RIRs was measured by reproducing exponential chirp signals by

means of a loudspeaker and considering different positions and ori-

entations in different rooms [22, 23]. In Figure 1 circles indicate the

source positions while arrows represent the orientation. All RIRs
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Fig. 1: Map of the real apartment (comprising a living room, a

kitchen, and a bathroom) used for the experimental setup. Large

circles indicate the source positions while small circles represent the

27 microphones.

were measured at 48kHz. Through the use of the image method [24,

25] the same set of RIRs was simulated at 16kHz in the living room,

in the kitchen and in the bathroom, varying the reverberation time

from 0.2 to 0.8 seconds and considering three source emission pat-

terns (from omnidirectional to very directional). A variation of the

original formulation of the image method was employed to account

for source directivity and orientation. Overall, 1155 different condi-

tions were generated in the living room, 324 in the kitchen and 18 in

the bathroom.

3.2. ASR task

To study ASR performance in the reverberant conditions described

above, a connected-digit recognition task has been selected, based on

a popular HTK architecture. Two alternative systems have been con-

sidered in order to analyze performance trends according to differ-

ent recognition complexities. The first task is based on word-models

and the related acoustic model is obtained from the TIDIGITS cor-

pus (about 8600 sentences for 12 whole-word HMMS). A parallel

set of experiments is based on phone models, in this case trained on

the likewise well-known TIMIT database (about 5000 sentences for

40 monophones). The recognition experiments are performed us-

ing MFCC features: speech is segmented into frames of 25ms with

a frame shift of 10ms using the Hamming window, and MFCC are

obtained from the log mel-spectrum by applying DCT. The feature

vector is augmented with the zeroth cepstral coefficient and the dy-

namic coefficients (∆ and ∆∆); Cepstral Mean Subtraction is then

used. Since the number of experiments is quite large, our test set

is represented by a subset of the standard test portion of TIDIGITS:

we have selected 870 sentences sampling uniformly the original set,

assuming a consistent performance trend.

4. RESULTS

As a first analysis we verify if the proposed parameter ELRT is ac-

tually correlated with the ASR Word Accuracy (WA) and to derive

the best value of T . Figure 2 plots the WA for the 1155 conditions

in the living room against the corresponding ELR110 for phone and

word models using the clean material for training. For the same con-

ditions, Figures 2c and 2d plot the accuracy against the T60, mea-

sured with respect to the maximum of the RIRs as there may be

no line-of-sight. The Figure confirms that the proposed parameter
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Fig. 2: ASR accuracy against ELR110 and T60 for phone and word

models trained on clean material. Each dot corresponds to a given

condition in the living room.

is strongly correlated to the ASR performance, although some vari-

ance is present mainly due to the probabilistic nature of the ASR and

to the non-linear influence of dictionary and language model (i.e. a

digit-loop). Conversely, the T60 presents a lower correlation with the

ASR behaviour, in particular for high reverberation times.

Figure 3 plots the standard deviation of the WAs (computed on

the 1155 replicas of the test set) as function of T : T=110ms is the

value that minimizes this curve and is therefore adopted in the rest

of the experimental analysis. In the forthcoming experiments we

present results using the word models only. Not reported experi-

ments confirm a similar trend for the phone models.
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Fig. 3: Standard deviation of the WA using clean models for different

values of T .

It is now interesting to investigate if the correlation between WA

and ELR110 still holds when different layouts (i.e. rooms) are con-

sidered. Figure 4 reports the results related to the three rooms: the

points of the RIRs in the kitchen and in the bathroom fit the dis-

tribution of RIRs in the living room, here represented through the

average WA with steps of 2dB. This confirms that the proposed RIR

classification is effective and almost independent of the room under

analysis.
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Fig. 4: ASR accuracy against the ELR110 for clean word models

considering the three rooms. The points of the livingroom are here

represented through a continuous line.

The scope of this work is not only to introduce an efficient char-

acterization of the RIRs based on ELR110 measure but also to prove

that RIRs with similar ELR110 have very similar reverberation prop-

erties with respect to ASR performance, despite other influencing

factors. This means that, given a set of similar RIRs, we can use just

one of them to generate contaminated training material and derive an

acoustic model that partly compensates the acoustic mismatch [22].

For this purpose we selected 4 RIRs, among the 1155 available in

the living room, with ELR110 respectively equal to 23, 17, 11 and

6.5dB and, via the contamination procedure [22], we created the cor-

responding acoustic models. Clustering the RIRs with a step of 1dB,

Figure 5a shows the average WA per bin when different acoustic

models are employed. ”Clean” indicates acoustic models trained on

the dry anechoic speech signals. The impact of the contamination
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Fig. 5: Average WA for models trained on: (a) single-condition ma-

terial using a single channel; (b) multi-condition with uniform sam-

pling of the space of ELR110 and using only low and high ELR110.

process is clear and improves WAs in a consistent way across the

different classes, confirming that the RIRs in a given cluster have

very similar properties. We can also state that, for a given chan-

nel, the best acoustic model is the one generated with the closest

ELR110, independently of the layout and the environment in the test

and training data. For a better analysis, Figure 6a reports the WA for

the 32 RIRs with ELR110 around 17dB, while Figure 6b focuses on

the 45 RIRs with ELR110=3.5dB. The Figures prove that the acous-

tic model trained on a single RIR is effective also for all the other

RIRs with similar ELRT . Interestingly, this also holds if we con-

sider the RIRs of another room. Figure 7 plots the ASR accuracies

obtained in the kitchen when using the acoustic models of the living

room for ELR110 equal to 17dB (Fig. 7a) and 6.5dB (Fig 7b). The

points match the line related to the average accuracy in the living

room, supporting our hypothesis.
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Fig. 6: WA of each channel in the 17dB class (a) and in the 3.5dB

class (b) for different acoustic models.
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Fig. 7: ASR accuracy of each channel of the kitchen when using the

living room models trained at ELR110=17dB and ELR110=6.5dB.

4.1. RIR-based multi-condition training

Multi-condition training is a strategy for acoustic model training

that attempt to cope with variable acoustic conditions by creating

a multi-condition traing dataset. Since we have observed that the

ELRT of both the test channel and the training channel are tightly

related to the WA, it can be used to select a representative set of RIRs

for the multi-condition dataset. To validate this hypothesis, we cre-

ated 3 multi-condition models based on the use of: 3 RIRs with low

ELR110 (“multi low”), 3 RIRs with high ELR110 (“multi high”) and

3 RIRs spanning in a uniform way the ELR110 of all RIRs (4.5dB,

8dB and 17dB). The average WA of the three models are reported

in Figure 5b. As expected the acoustic model resulting from the

uniform multi-condition training shows improved robustness with

respect not only to the models based on a single reverberant condi-

tion (i.e. a single ELR110) but also with respect to the non-uniform

multi-condition models. It is worth noting also how the “multi low”

and “multi high” models perform very similarly to the related single

models, 6.5dB and 17dB respectively, since they comprise a limited

range of ELR110.

4.2. Real RIRs

Interestingly, the ELR110 seems to be an absolute measure, for a

given recognition task, and preserves its significance also on real

data. Figure 8 plots together the ASR results for data coming from

both simulated and real IRs; for each ELR110 the cloud of points of

the simulated data is substituted by mean and standard deviation.

The points associated to the real RIRs, whose ELR110 ranges

between 7 and 14dB, present a very good match with the simulated

data. Concerning the contaminated acoustic models, Table 1 reports

the average WA of the real data using various acoustic models trained
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Fig. 8: ASR accuracy against the ELR110 for clean word models for

simulated and real data.

Model ELR110 Real RIRs Livingroom Kitchen

L1-ML1 10.9 95.3 95.4 95.2

K1-MK1 10.8 95.5 95.7 95.4

sim1 17 91.9 91.4 92.5

sim2 11 93.6 93.5 93.8

sim3 6.5 92.5 91.8 92.1

Table 1: Average WA on the real-RIRs data using various acoustic

models, trained with real (L1-ML1, K1-MK1) and simulated (sim1,

sim2, sim3) data. 55 channels are considered in the Livingroom and

52 in the Kitchen.

on single independent RIRs: “L1-ML1” and “K1-MK1” refer to the

two real source-microphone pairs reported in Figure 1, the labels

“sim1”, “sim2” and “sim3” refer to models based on RIRs generated

through the image method. Note that again the best model is the one

with ELR110 closest to the average ELR110 of the real data which is

9.9dB. Also, the average performance using models trained on the

real data is similar as the range of ELR110 is limited. The minor gap

between the real and synthetic models may be related to the different

sampling rates.

5. CONCLUSIONS

In this work a study of distant-talking speech recognition in reverber-

ant conditions is presented: exploiting a large variety of both simu-

lated and real impulse responses, we show that the ASR performance

correlates with the Early-to-Late Reverberation Ratio. Although the

ASR errors distribution is influenced also by the active dictionary,

the analysis proves that it is possible to approximately predict recog-

nition accuracies from acoustic parameters derived from the room

impulse responses (i.e. ELR110).

The accordance between the simulation and the real measure-

ments confirms the validity of the proposed analysis, envisaging a

practical method for training and selecting proper acoustic models

for a given acoustic environment. Indeed, it is possible to synthet-

ically generate a number of RIRs of the targeted environment and,

according to the ELRT ranking, select a small subset of them for

acoustic training.

Future work will investigate the influence of other important fac-

tors, namely the possible background noise, the complexity of the

recognition task or the language itself. Another interesting issue is

the capability of blindly estimating the ELRT , or equivalent met-

rics, directly from the audio signals [21, 26], without requiring a full

knowledge of the RIRs.
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