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ABSTRACT

It is admitted that human speech perception is a multimodal process
that combines both visual and acoustic informations. In automatic
speech perception, visual analysis is also crucial as it provides a
complementary information in order to enhance the performances of
audio systems especially in highly noisy environments.
In this paper, we propose a unified probabilistic framework for
speech unit recognition that combines both visual and audio infor-
mations. The method is based on the optimization of a criterion that
achieves continuous speech unit segmentation and decoding using a
learned (joint) phonetic-visemic model. Experiments conducted on
the standard LIPS2008 dataset, show a clear and a consistent gain of
our multimodal approach compared to others.

Index Terms— Visual speech unit recognition, multi-class sup-
port vector machines, multimodal segmentation.

1. INTRODUCTION

Several studies support that speech perception is a multimodal pro-
cess which is highly influenced by articulatory movements of speak-
ers’ faces. One of the most popular examples that exhibits the mul-
timodal nature of speech perception is known as the McGurk effect
[1]: this illusion shows that when a voice saying /ba/ was presented
with a face articulating /ga/ most subjects heard /da/. It is therefore
admitted that visual speech analysis is essential in order to enhance
automatic speech recognition (ASR) systems, especially when the
underlying acoustic signals are captured in noisy environments [2].

Recently, many works have focused on visual speech recogni-
tion (VSR) also known as lipreading. The growing interest in this
research area reflects the need to design robust visual speech ana-
lyzers for real-world applications, including human machine inter-
action for multimodal remote control, assisting experts in decoding
video evidences, monitoring public places with video surveillance,
or speech signal enhancement dedicated to in-car communication.

Continuous visual speech recognition is a temporal decoding of
sequences of visual speech units known as visemes1. While the nu-
merous existing ASR solutions range from speaker dependent iso-
lated word recognition, to speaker independent phoneme recogni-
tion, there is still no well-defined baseline systems for continuous
VSR; existing recognition systems are restricted to digits [3, 4, 5],
letters [6, 7], words [6], or short phrases [8, 9, 10]. Only a few
work presented continuous VSR performance on short vocabulary
sentences [11, 12]. Within this context, authors have mainly focused
in the past decade, on designing relevant visual features that better
capture speech induced variability rather than the appearance of the

1Visemes are visual units of speech associated to phonemes in spoken
languages.

speaker [13], while being speaker independent [3, 5, 10]. This is
still considered as an open problem due to large speaker inherent
variability in lip-motion and appearance.
Despite the increasing interest in this domain, the challenge of con-
tinuous VSR remains threefold. Firstly, it is still unclear what defi-
nition of visual speech units (i.e., visemes) should be used for real-
world applications and in practice several phoneme-to-viseme re-
lationships have been proposed (see for instance [12, 14, 15, 16])
with some advantages and insufficiencies [17]. Secondly, build-
ing lipreading systems requires annotated audio-visual continuous
speech datasets which are scarce and the few existing ones require
tedious and error prone manual generation of the ground truth. Fur-
thermore suitable datasets are expected to have diversity in speakers
and the vocabulary used in uttered sentences. Among the few exist-
ing databases, neither AV-TIMIT [12] nor AV-ViaVoice [15] are pub-
licly available, and XM2VTS [18] is not free. Fortunately, the large
vocabulary LIPS2008 database [19], originally designed for speech
synthesis purposes, is available and constitutes a suitable alternative.
Finally, considering the requirement of the targeted communication
framework, lipreading systems should involve effective classifiers
able to encode time-varying speech utterances and efficient decod-
ing schemes for speech segmentation.

In this paper, we propose a novel learning framework for contin-
uous VSR based on support vector machines (SVMs)2. Our method
is multimodal and unifies the problem of visual and acoustic speech
unit recognition using a probabilistic framework. We will show that
our visual model is able to reduce phoneme class confusion due to
acquisition conditions as well as signal variability. In order to tackle
these issues, our work includes the following contributions
-We propose a unified probabilistic framework that simultaneously
recognizes and delimits boundaries of visual and acoustic units in
continuous speech. Our decoding scheme is based on a model that
(i) explores in an efficient way the search space of possible speech
units as well as their boundaries and then (ii) scores and selects the
most likely configuration.
-We design a scoring function based on a Bayesian classifier that
combines the output of SVMs with an a priori language model that
captures joint statistics of visemes and phonemes. For that purpose,
we extend this study by comparing different viseme definitions.

The rest of this paper is organized as follows: Section 2 pro-
vides speech unit definitions and gives a general formulation of the
recognition task. Section 3 describes our visual learning framework.
Section 4 establishes the multimodal fusion scheme and presents
an efficient sequence decoding procedure. Experiments and results
obtained are reported in section 5, before concluding in section 6.

2The choice of SVMs was also motivated by their good generalization ca-
pability, compared to other models, in order to handle few training examples
in high dimensional spaces.
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JEFFERS MAP [14]
Viseme Phonemes

A /f/ /v/

B /er/ /ow/ /r/
/w/ /uh/ /uw/

C /b/ /p/ /m/
D /aw/
E /dh/ /th/
F /ch/ /jh/ /sh/
G /oy/ /ao/
H /s/ /z/

I
/aa/ /ae/ /ay/

/eh/ /ah/ /ey/ /ih/
/iy/ /y/ /ax/

J /d/ /l/ /t/
/n/ /dx/

K /k/ /g/ /ng/ /hh/
S /sil/

NETI MAP [15]
Viseme Phonemes

V1 /ao/ /ah/ /aa/ /oy/
/aw/ /er/ /hh/

V2 /uw/ /uh/ /ow/ /oh/
V3 /ae/ /eh/ /ey/ /ay/
V4 /ih/ /iy/ /ax/
A /l/ /r/ /y/
B /s/ /z/
C /t/ /d/ /n/
D /sh/ /ch/ /jh/
E /p/ /b/ /m/
F /th/ /dh/
G /f/ /v/

H k/ /g/ /w/
/ng/

S /sil/

MPEG-4 MAP [16]
Viseme Phonemes

V1 /b/ /p/ /m/
V2 /f/ /v/
V3 /th/ /dh/
V4 /d/ /dx/ /t/
V5 /k/ /g/ /ng/ /hh/
V6 /sh/ /jh/ /ch/
V7 /s/ /z/
V8 /n/ /l/
V9 /r/ /er/

V10 /y/ /aa/ /ao/ /aw/
/oy/ /ah/ /ax/

V11 /eh/ /ey/ /ae/ /ay/
V12 /iy/ /ih/
V13 /ow/
V14 /uh/ /uw/ /w/

S /sil/

HAZEN MAP [12]
Viseme Phonemes

OV /ax/ /ih/ /iy/ /dx/
BV /ah/ /aa/
FV /ae/ /eh/ /ay/ /ey/ /hh/

RV /aw/ /uh/ /uw/
/ow/ /ao/ /oy/ /w/

L /l/
R /r/ /er/
Y /y/

LB /b/ /p/
LCl /m/
AlCl /s/ /z/ /n/
Pal /jh/ /ch/ /sh/
SB /t/ /d/ /th/ /dh/ /k/ /g/
LFr /f/ /v/
VlCl /ng/

S /sil/

Table 1. The tables
show four ”many-to-
one” viseme mappings
tested in our experi-
ments. These mappings
are based on linguis-
tic and/or data-driven
methods, and differ in
their number of viseme
classes: from 11 to 14,
plus silence viseme S.
Note that we re-defined
all these mappings on
the same input set P of
41 phonemes.

2. PROBLEM FORMULATION

In this section, we introduce different speech units3 and the underly-
ing mapping functions. We also introduce our problem formulation
that allows us to tackle continuous speech unit recognition.

2.1. Speech Unit Mapping

Visemes are visual speech units associated to phonemes in spoken
languages. As phonemes are sometimes difficult to distinguish, es-
pecially in noisy environments, visemes provide a complementary
information that enhances discrimination between speech units. In
practice, visemes result from grouping phonemes with similar visual
appearances. This grouping is usually defined from human experts’
knowledge (and hence varies from one expert to another [14, 16]) or
can be inferred by learning from data [12, 15].
Several many-to-one mappings exist in the literature without univer-
sal agreement on the exact number of visemes needed to accurately
describe visual speech information. Recently more complex many-
to-many relationships between visemes and phonemes have been de-
fined and applied to computer-based facial animation [17]. However
for applications such as speech enhancement and speech unit recog-
nition, straightforward many-to-one mappings, between visual and
acoustic units, are preferred.

Considering P as a fixed set of 41 phoneme labels, we use a
surjective mapping ψ : P → V, with ψ, V being resp. a mapping
and a set of visemes taken from one of the following: jeffers [14],
neti [15], mpeg-4 [16], and hazen [12]. Table 1 presents these four
”many-to-one” viseme mappings which are used in our experiments.
Note that we translate all these mappings with a reduced set P of 39
symbols corresponding to English phonemes [20] commonly used
in phoneme recognition and we added phonemes /ax/ and /ao/ to
this set. These phonemes belong originally to classes /ah/ and /aa/
respectively but they appear in distinct viseme classes for some map-
pings.

2.2. Continuous Speech Unit Recognition

Again, the main purpose of VSR is to support and enhance acoustic-
based systems in challenging environments. Resulting from the non
unicity of the phoneme-to-viseme mappings (see again Table 1),
viseme classes are different and it is meaningless to evaluate and
compare performance of speech recognition using viseme classes as
a target. However, as all these mappings are defined on the same

3Again, a speech unit refers to a viseme for video and a phoneme for
audio.

input (phoneme) set, it is preferable to evaluate their performance by
considering phonemes as our targeted classes. Thereby, as will be
shown through this paper, we propose a multimodal speech unit de-
coding algorithm that unifies both phoneme and viseme based mod-
els.

Our goal is to tackle continuous speech recognition by finding
a sequence of speech unit labels and their boundaries (Y∗,γ∗),
that maximizes a posterior probability P (Y∗,γ∗|X), here X =
[x1, x2, . . . , xT ] is a sequence of successive input observations (cor-
responding to a given talking person) and Y = [y1, y2, . . . , yn] is
the underlying (unknown) sequence of speech unit labels with each
yi ∈ P. We also define γ = [γ1, γ2, . . . , γn] as n (unknown) posi-
tive values that delimit time intervals of each speech unit in Y with
γ0 < γ1 < · · · < γn = T and γ0 = 0; so the time interval associ-
ated to yi is defined as ]γi−1, γi].
Considering V = [v1, v2, . . . , vn] as a sequence of visual units as-
sociated to Y = [y1, y2, . . . , yn], with each vi ∈ V, we rewrite the
posterior probability defined earlier as

P (Y,γ|X) =
∑

V∈Vn

P (Y|V,γ,X)P (V,γ|X), (1)

here P (V,γ|X) ∝ P (X|V,γ)P (V), with P (X|V,γ) being the
likelihood of a sequence X given viseme labels in V. The prior
P (V) corresponds to the probability of a given sequence of viseme
labels while P (Y|V,γ,X) is a joint phoneme/viseme a priori
model, whose design is shown later in this paper.

3. VISUAL LEARNING FRAMEWORK

This section describes our visual learning model which consists in a
multi-class SVM and a visemic language model that learns speech
unit transitions using a large corpus of phonetic transcriptions and
their associated visemic maps.

3.1. Discriminative Training with Multi-class SVMs

Considering X as the union of all possible sequences taken from the
same distribution as X (see Section 2.2), we define T = {(xi, vi)}i
as a training set with each xi corresponds to an instance of a well
delimited subsequence4 and vi its viseme label in V (taken from a
well defined ground truth). Multi-class SVMs use a mapping Φ, that
takes data from the input space to a high (possibly infinite) dimen-
sional space and find an optimal separating hyperplane in that high

4i.e., any subsequence of observations taken from a given sequence in X
but corresponds to a single viseme.
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dimensional space. Given classes {v ∈ V}, training is achieved by
solving the following quadratic programming problem

min
w,b,ξ

1

2

∑
v∈V

〈wv,wv〉+

|T|∑
i=1

ξi

s.t ξi = max
v∈V\vi

l(fvi(xi)− fv(xi)), ∀ i,
(2)

here fv(x) = 〈wv,Φ(x)〉 + bv with wv and bv being respectively
hyperplane normal and bias associated to a given class v ∈ V and
w = {wv}v , b = {bv}v , ξ = {ξi}i and l(.) is a convex loss
function. Note that, in practice, we use string kernel maps for Φ [5],
which are able to transform sequences of varying lengths in {xi}i
into high dimensional feature vectors. Details about the design of
these kernel maps, out of the main scope of this paper, are deliber-
ately omitted and can be found in [5].
Now we turn the scores provided by SVMs for different viseme
classes into class probability distribution using the method in [21].
The latter is based on the Levenberg-Marquardt algorithm that uses
an additional sigmoid in order to define class probability distribution
as p(v|x) ∝

(
1 + exp{Avfv(x) + Bv}

)−1, here Av and Bv are
optimized once by minimizing a local negative log-likelihood on a
training set.
Given a sequence X of T observations partitioned using γ =
[γ1, . . . , γn] into n subsequences [x1, . . . ,xn], we estimate the
posterior probability of any sequence of n viseme labels V =
[v1, . . . , vn] given X as P (V, γ|X) =

∏n
i=1 p(v

i|xi), with xi
being the ith subsequence of X delimited by ]γi−1, γi].

3.2. Viseme Language Modeling

In order to build the viseme language model, we automatically gen-
erate transcriptions (at the viseme level) from a large corpus of data.
For that purpose, we use the Carnegie Mellon pronouncing dictio-
nary5 which contains more than 130k words. We applied different
mappings defined in Table 1, in order to convert the phonetic tran-
scriptions into viseme sequences.
The viseme (l-gram) language model provides the probability P (V)
that a given sentence V = [v1, . . . , vn] is observed as

P (V) = P (v1)

n∏
k=2

P (vk|vk−1, . . . , vk−l+1). (3)

In the above probability, P (vk|vk−1, . . . , vk−l+1) is estimated
by parsing and computing the frequencies of all sequences of l
viseme labels present into the training corpus. Notice that this Max-
imum Likelihood based estimator overestimates the probabilities
of l-viseme sequences appearing in the training corpus, while it
underestimates those which are not present. Therefore, we apply
smoothing [22] in order to re-balance the estimated probabilities.

4. SEGMENTATION AND MULTIMODAL FUSION

In this section, we introduce our main contributions, which allows us
(i) to unify viseme and phoneme decoding in a global probabilistic
framework and (ii) to approach the segmentation problem for con-
tinuous speech.

5http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Lexicon/

Fig. 1. Visual learning framework: Let X be an input sequence
of audio-visual observations. Time intervals γ = [γ1, . . . , γn] of
speech units and corresponding sequence of phoneme labels Y =
[y1, . . . , yn] are provided. xi is the ith subsequence of X delimited
by ]γi−1, γi] and vi = ψ(yi) its viseme label provided by a mapping
function ψ. SVMs are trained for different viseme classes {v ∈ V}
and SVM scores are turned into probabilities (see Section 3.1). A
statistical (l-gram) language model is also estimated from phonetic
transcriptions (see Section 3.2).

4.1. Phoneme Scoring

We use signal separation for phoneme scoring where each phoneme
has a distinct spectral structure. We consider a dictionary of atoms
D = [Dy]y with each Dy associated to the phoneme class y ∈ P.
Using this dictionary, each audio observation x, taken from a given
sequence of successive audio-frames, can be approximated as x '
D α(x) =

∑
y∈P Dy αy(x), with α(x) = [α1(x)′ . . .α|P|(x)′]′

being the non-negative activation vector which is normalized such as
α(x)′α(x) = 1. In this decomposition, each αy(x) describes the
spectral realization of the phoneme class y. In practice, the atoms
in the dictionary span three audio-frames. We use exemplar-based
characterization [23] in order to set our dictionary atoms and apply
non-negative matrix factorization to find the coefficients α(x) that
describe each observation x as a linear combination of atoms.
Given a sequence X composed of T audio observations partitioned
using γ = [γ1, . . . , γn] into n subsequences [x1, . . . ,xn], we esti-
mate the posterior probability of any sequence of n phoneme labels
Y = [y1, . . . , yn] given X as P̃ (Y,γ|X) =

∏n
i=1

∥∥αyi(xi)∥∥1/∥∥α(xi)
∥∥
1
, with xi being the ith subsequence of X delimited by

]γi−1, γi], and αyi(xi) is the activation vector associated to xi and
to the phoneme class yi.

4.2. Multimodal Rescoring and Segmentation

We introduce a unified probabilistic framework that combines both
the viseme and the phoneme models described earlier in order to
rescore speech units and to handle segmentation for a given sequence
X. Considering Eq. (1), we rewrite

P (Y,γ|X) =
∑

V∈Vn

P (Y|V)P (V,γ|X). (4)
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The term P (V,γ|X) is estimated as discussed earlier in Section 3,
while P (Y|V) = P (Y,V)/P (V) is a joint viseme-phoneme lan-
guage model with P (Y,V) = 1{ψ(Y)=V} × P (Y) (as V is a de-
terministic function of Y defined by the mapping ψ). Similarly to
P (V) (see Section 3.2), P (Y) is also estimated.
Now combining the phoneme scoring (in Section 4.1) and the scor-
ing defined by Eq 4, we obtain our unified criterion for segmentation
and speech unit rescoring; the best sequence of speech unit labels
and its associated segmentation (Y∗,γ∗) correspond to

arg max
Y,γ

(1− λ) P̃ (Y,γ|X) + λ P (Y,γ|X), (5)

here λ ∈ [0, 1]. This criterion mixes two terms; the left-hand side
term measures the posterior probability of phoneme labels using
only the audio information while the second term rescores phoneme
labels by applying the visual model as well as the joint viseme
phoneme language model.

Optimization. in order to solve (5), we use an efficient greedy al-
gorithm that jointly produces segmentation and speech unit decod-
ing. This algorithm proceeds iteratively by incrementally generat-
ing multiple configurations of subsequence boundaries and labelings
of a given sequence X. At a given iteration p, the algorithm con-
siders that the best configuration of [(y1, γ1) . . . (yp−1, γp−1)] is
known (fixed) and only (yp, γp) is allowed to vary (i.e., yp ∈ P and
γp ∈ {γp−1 + lmin, . . . , γ

p−1 + lmax} with lmin = 2, lmax = 16
in practice); so the best configuration of (yp, γp) is chosen to opti-
mize Eq. 5. The algorithm terminates when all the sequence X is
split into n∗ labeled subsequences (Y∗,γ∗), with n∗ ← p.

5. EXPERIMENTS

5.1. Evaluation Sets and Settings

We use the LIPS2008 Visual Speech Synthesis Challenge database
[19] which contains 278 phonetically balanced sentences spoken by
a single, female speaker, in a neutral speaking style. It was recorded
at 50 fps with a spatial resolution of 576× 720 pixels. The acoustic
speech for each utterance is encoded at 16bits/sample with a sam-
pling rate of 44.1kHz. Even and odd sentences are respectively used
for training and testing.
We used a combination of string kernels as visual feature mapping Φ
in order to measure the similarity as well as the dynamics of visual
feature sequences (see [5] for details about kernel design).
We evaluate the priors P (V) as well as the joint viseme-phoneme
language model P (Y|V) using 3-gram language model approxima-
tion. Table 2 shows perplexity measures of these language models
built from different vocabularies and applied to the test data.

Vocabulary P Vjeffers Vneti Vmpeg-4 Vhazen

Perplexity 44.1 9.7 11.2 15.9 13.1

Table 2. Perplexity scores.

As discussed in Section 4.1, phoneme scoring is achieved us-
ing a dictionary of hundred atoms per phoneme class. Multimodal
rescoring and segmentation experiments (see Eq. 5) are conducted
with various value of λ ∈ {0, 0.25, 0.5, 0.75, 1}. For a sequence of
t outputs, we measure the accuracy of our segmentation and labeling
algorithm using (t− d− s− i)/t, with t being the number of labels
in the ground-truth transcription, and d, s, i being respectively the
number of deletions, substitutions and insertions.

Fig. 2. This figure shows experiments on the LIPS2008 database.
Continuous speech unit recognition accuracies w.r.t. different value
of λ are shown (see Eq. 5). Four phoneme-to-viseme mappings are
compared (see Table 1).

5.2. Results and Comparison

Fig 2 shows the overall speech sequence segmentation performances
with respect to different phoneme-to-viseme mappings defined in Ta-
ble 1. In these results, the baseline corresponds to the accuracy with
λ = 0 (i.e., using only the audio information). These performances
are also shown for λ = 1, which corresponds to the application of
the visual model only. In this case, phoneme labels are derived from
joint viseme-phoneme statistics applied to the decoded viseme se-
quence. This explains the drop in performance.
According to these results, the best performances are achieved us-
ing Jeffers map [14] with λ = 0.75 where phoneme class confusion
is reduced by more than 10 points and this coincides with the low-
est perplexity score (in Table 2). Note that Mpeg-4 [16] and Neti
[15] mappings have similar global behaviors as Jeffers map [14]. All
these plots show the influence of λ and the number of viseme classes
within each mapping; we observe, in particular, that a small number
of viseme classes will obviously result into high visual model perfor-
mance, but a tradeoff is necessary in order to better reduce phoneme
class confusion.

6. CONCLUSION

We introduced in this paper a unified probabilistic framework that
simultaneously recognizes and delimits boundaries of visual and
acoustic units in continuous speech. We proposed a scoring function
based on a Bayesian classifier that combines the output of SVMs
with an a priori language model that captures joint statistics of
visemes and phonemes.
Experiments show that the proposed model is effective and able
to reduce substantially phoneme class confusion. Four ”many-to-
one” phoneme-to-viseme mappings have been compared and the
Jeffers mapping provides the best results. As a future work, we
are currently investigating the application of our method to acoustic
speech enhancement in challenging conditions including noisy car
environments. We are also investigating the design of more complex
phoneme-to-viseme relationships for VSR application in order to
handle the natural asynchrony of audio-visual speech.
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