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ABSTRACT
The recent advances in imaging devices have opened the op-
portunity of better solving computer vision tasks. The next-
generation cameras, such as the depth or binocular cameras,
capture diverse information, and complement the conventional
2D RGB cameras. Thus, investigating the yielded multi-modal
images generally facilitates the accomplishment of related ap-
plications. However, the limitations of these devices, such as
short effective distances, expensive costs, or long response
time, degrade their applicability in practical use. Addressing
this problem in this work, we aim at action recognition in
RGB videos with the aid of Kinect. We improve recognition
accuracy by leveraging information derived from an offline col-
lected database, in which not only the RGB but also the depth
and skeleton images of actions are available. Our approach
adapts the inter-database variations, and enables the sharing
of visual knowledge across different image modalities. Each
action instance for recognition in RGB representation is then
augmented with the borrowed depth and skeleton features.

Index Terms— Action recognition, Depth Association,
Skeleton Association

1. INTRODUCTION

Most computer vision applications are established on im-
age/video content analysis techniques, which are highly
adapted to the available imaging devices. We are aware of the
recent advances in imaging devices, such as the RGBD camera
Microsoft Kinect1. The multi-modal images they provide give
rich and diverse information. Thus, there has been a strong
demand for content analysis techniques that leverage these
cameras to better solve increasingly complex vision tasks, and
even to initiate new applications. However, despite the great
potential, these cameras have their restrictions. For instance,
Kinect is with a short range of effective distance from 1.2
to 3.5 meters, and these cameras are relatively expensive.
The restrictions hinder the applicability of these cameras in
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Fig. 1. The proposed framework.

practical use. We address this issue in this work, and consider
the scenario of solving a vision task with one online accessible
image modality as well as a multi-modal dataset collected
offline. We propose an approach that can borrow information
from the extra dataset and facilitate the task of recognizing
actions recorded by a 2D RGB camera.

As shown in Fig. 1, our main contribution in this work is
to provide an effective way of utilizing new types of cameras,
and better solve complex vision applications even when most
of these cameras are not available online. The proposed ap-
proach is evaluated on a multi-view benchmark dataset which
is captured by several RGB cameras. By using the same aux-
iliary database, our approach results in remarkable accuracy
improvement in each dataset. Furthermore, our approach is
developed in a general manner, and can be applied to vision
applications in which multi-modal images are helpful.

2. RELATED WORK

Being one of the most important components in video under-
standing, action recognition is essential to widespread appli-
cations, such as surveillance. As indicated in [1], one funda-
mental difficulty of action recognition is the large intra-class
variations. These variations can result from both intrinsic
and extrinsic factors, including posture differences among
subjects, clutter background, mutual or self occlusions. To
address this problem, one of the current research trends in
action recognition is to model the relationships among local
features. For example, Matikainen et. al. [2] specify geo-
metrical displacements between local features by generating
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a frequency lookup table. Besides, graphical models, such as
factorial conditional random fields in [3] or hidden Markov
model in [4], are applied to formulate the spatio-temporal
correlation of local evidence. However, the afore-mentioned
methods recognize actions based on 2D RGB images/videos.
Restricted by information available, it is still very challenging
to deal with intra-class variations caused by different camera
perspectives or partial occlusions.

Owing to the recent advances in sensor technology, it is fea-
sible to capture color as well as depth information of an action
video in real time by RGBD cameras, e.g., Kinect. Research
efforts, such as [5–7], have demonstrated that depth maps of
actions afford informative and invariant clues to build robust
action recognition or pose estimation systems. Researches,
e.g., [8, 9], on 3D skeleton representation and correction may
open the opportunity of resolving multi-view action recog-
nition. The introduction of depth and skeleton information
indeed benefits action recognition. However the short ranges
of effective distances often make RGBD cameras inapplicable
in real world applications, such as surveillance.

3. PROBLEM STATEMENT

We focus on recognizing actions of C classes. Suppose that
we are given a training set, D = {(xi, yi)}Ni=1, where xi ∈ X
and yi ∈ Y = {1, 2, ..., C} are the RGB feature represen-
tation and the class label of the ith action, respectively. To
borrow information across modalities, an auxiliary dataset,
A = {(x̃i, d̃i, s̃i)}Mi=1, taken by Kinect is provided jointly,
where x̃i ∈ X , d̃i ∈ D, and s̃i ∈ S are the RGB, depth, and
skeleton feature representations of the ith instance, respec-
tively. Note that auxiliary dataset A is unlabeled, and we use
tildes to mark its data. With D and A, we aim to derive a good
classifier for predicting test data that are similarly distributed
to D. The auxiliary dataset A is collected to cover the action
classes of interest in advance, i.e., Y in this case. Building A
beforehand is reasonable since we often focus on detecting
some predefined types of actions in most action recognition
applications. However, it is not necessary that the classes of
actions in D and in A are the same. In addition, D and A
can be established in different ways, so large inter-database
variations are induced.

4. THE PROPOSED APPROACH

Our approach is composed of three stages, which are described
as follows.

4.1. Cross-dataset correspondences

The goal of this stage is to correlate D and A, the two indepen-
dently collected datasets, by exploring their common image
modality, RGB. Specifically, we associate each xi in D with
a plausible x̃πi in A. A naı̈ve way is the nearest neighbor

search. However, it ignores the inter-database variations, and
may result in sub-optimal performance. To address this issue,
we exploit the data labels in D, and incorporate discriminant
analysis to guide the construction of cross-dataset correspon-
dences. We cast the task of cross-dataset correspondences
as a labeling problem over Markov random fields (MRFs),
in which the mutual verification among correspondences is
activated. Hence, the borrowed multi-modal features are more
discriminative.

In the construction of MRFs model with graph G = (V, E),
each x̃i in A corresponds to a state, while each xi in D is
associated with a variable node vi, which takes a value from
the state set L = {1, 2, ...,M}. In this way, vi determines
the correspondence of xi in A, i.e.{xi ∈ D, x̃vi ∈ A}. An
undirected edge e = (vi, vj) is added into E if xj is one of
the ` nearest neighbors of xi. Hence, |V| = N and `N/2 ≤
|E| ≤ `N . MRFs model the probability distribution over each
possible labeling V = [v1 · · · vN ] ∈ LN in form of

P (V ) =
1

Z
exp (−E(V )), (1)

where partition function Z for normalization is defined as

Z =
∑

V ′∈LN

exp (−E(V ′)). (2)

In this work, we consider the following energy function:

E(V ) =
∑
vi∈V

ψ(vi) +
∑

(vi,vj)∈E

ϕ(vi, vj), (3)

where the unary function ψ and the pairwise function ϕ are
defined as

ψ(vi) =

{
‖xi − x̃vi‖, if x̃vi ∈ kNNs of xi in A,
∞, otherwise,

(4)

ϕ(vi, vj) =

{
λ1‖x̃vi − x̃vj‖, if yi = yj ,
−λ2‖x̃vi − x̃vj‖, otherwise,

(5)

where kNNs denote the k nearest neighbors. k, λ1, and λ2
are three positive constants. They as well as ` are determined
by cross validation. Note that only the labels of data in D are
used. The auxiliary database A is assumed to be unlabeled.

The unary function in (4) ensures the compatibility of each
correspondence. The pairwise function in (5) enforces class-
consistent labeling. That is, x̃πi

and x̃πj
should be similar

to each other if and only if xi and xj are of the same class.
After applying graph cut [10] to minimizing (3), the most
plausible configuration V is obtained. It follows that the N
cross-dataset correspondences, {(xi, x̃πi

)}Ni=1, are established
with πi ← vi.

4.2. Cross-modal feature association

In the stage, we aim to augment each training action in D
and each testing action with additional depth and skeleton
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features. Based upon the one-to-one modal mapping in A,
the correspondences {(xi, x̃πi)}Ni=1 established above can be
propagated across image modalities, i.e., {(xi, d̃πi

)}Ni=1 and
{(xi, s̃πi

)}Ni=1. Yet, these correspondences are valid only for
training data in D, and are not available for new testing data.
To overcome this problem, we adopt kernel canonical corre-
lation analysis (KCCA) to correlate data of two different do-
mains, RGB X and skeleton S, via {(xi ∈ X , s̃πi ∈ S)}Ni=1.

Let φ : X → Fx denote the feature map, which transforms
data from domain X to space Fx. Similarly, we have φ̃ : S →
Fs. Via φ and φ̃, data of the two domains are mapped to
high-dimensional Hilbert spaces, i.e.,

xi 7→ φ(xi) and s̃i 7→ φ̃(s̃i), for i = 1, 2, ..., N . (6)

KCCA seeks a pair of projections (u,v), and uncovers a
common space, in which the correlation between projected
data {u>φ(xi)} and {v>φ̃(s̃πi)} is maximized. It has been
proven in [11] that the projections lie in the span of data, i.e.,

u =

N∑
i=1

αiφ(xi) and v =

N∑
i=1

βiφ̃(s̃πi). (7)

In KCCA, the optimal projections (u∗,v∗), parameterized by
(α∗ = [α∗1 · · ·α∗N ]>,β∗ = [β∗1 · · ·β∗N ]>), are given by

(α∗,β∗) = argmax
α,β

α>KxKsβ√
α>K2

xα · β
>K2

sβ
, (8)

where Kx = [φ(xi)
>φ(xj)] ∈ RN×N , (9)

Ks = [φ̃(s̃πi
)>φ̃(s̃πj

)] ∈ RN×N . (10)

The optimal (α∗,β∗) in (8) is obtained by solving a gener-
alized eigenvalue problem. Furthermore, the formulation of
KCCA can be extended to uncover multidimensional projec-
tions, i.e., U = [u1 · · ·up] and V = [v1 · · ·vp].

With U and V , we first project all the data under skeleton
representation in A, i.e.{V >s̃i}Mi=1. For an input action x,
which is either a training or a testing sample, we project x
via U>x, and retrieve its k nearest skeleton samples. The
borrowed skeleton feature s is generated by minimizing the
square reconstruction error, and is a convex combination of
the k retrieved samples. We tune k via cross validation. The
optimal range of k is 1 ∼ 5 in most of our experiments.

The same procedure is repeated for correlating image
modalities RGB X and depth map D. Every action x is aug-
mented with two additional features borrowed from A:

x 7→ (x,d, s). (11)

It follows that the augmented dataset is constructed, i.e., D′ =
{(xi,di, si)}Ni=1.

4.3. Recognition with augmented features

The training data for action recognition have been expanded
from D to D′. Three image modalities of each action are

available at the same time. Early fusion or late fusion [12] can
be adopted for combining the three heterogeneous features to
achieve better performance. We have implemented both the
two fusion strategies, and describe them in the following.

Multiple Kernel Learning for Early Fusion. We com-
pile an kernel matrix for actions in each of the three image
modalities, and adopt SimpleMKL [13], one of the state-of-the-
art MKL packages, to learn an SVM classifier with multiple
kernels. In this way, heterogeneous features are fused in the
domain of kernel matrices.

Top-level Logistic Regression for Late Fusion. We learn
an SVM classifier with probability estimation for each image
modality, and concatenate the outputs of all the SVM classi-
fiers. A top level L2-regularized logistic regressor is derived
to work on data in this representation. In this manner, features
are combined in the classifier level.

On Predicting A Test Action. Given a test action x, we
first augment it with the borrowed depth and skeleton features
via (11). Then, either early fusion or later fusion can be applied
to making the prediction.

Testing with data we collected, the performances of early
fusion and late fusion are quite similar. Multiple kernel learn-
ing is less efficient owing to jointly tuning hyperparameters
in kernel functions. Thus, we choose late fusion, and report
quantitative results by late fusion in all the experiments.

5. IMPLEMENTATION DETAILS

To extract robust RGB features for action videos, we prepro-
cess each video used in the experiments as follows. First, we
apply the video inpainting technique [14] to compute the back-
ground images from a collection of sample videos. Then, we
take the acquired background images as the mask, and adopt
a background subtraction algorithm [15] to segment out the
foreground region in each video frame. Accordingly, we can
precisely compute the space-time volume (STV) features from
the region of interest without worrying about the clutter back-
ground. In our implementation, we scale a given action video
to the resolution 48×64×t where t is the number of frames in
the video. The 3D-HOG (histogram of oriented gradients) de-
scriptor [16] is applied to extract features both in a space-time
volume and its horizontal mirror for against reflection. In more
detail, we use 16×16×16 pixel blocks, each of which is further
divided into 2×2×2 cells. Five hundred prototypes are derived
to build up the embedding space. It leads to a compact rep-
resentation for actions in RGB videos. As for depth features,
we use the Spatio-temporal Local Binary Pattern (STLBP) as
the feature representation of depth maps. The STLBP is devel-
oped to model the variation of motion and appearance based
on concatenated LBP histograms. As for skeleton features, we
implement the Fourier Temporal Pyramid [9] to represent the
temporal dynamics of each 3D joint of a human body.
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Table 1. Recognition rates (%) of different methods on the i3DPost dataset.

Method Ours RGB DEP SKE [17]

Accuracy (%)
0 ◦ 95.2 86.9 88.1 80.9 77.5
45 ◦ 96.4 91.6 83.3 84.5 84.9

0 ◦∪45 ◦ 94.7 85.1 88.7 86.3 84.9

6. EXPERIMENTAL RESULTS

To test the effectiveness of our approach, we present the per-
formance of our approach to action recognition and compare it
with other state-of-the-art methods. In addition, the benchmark
of action recognition, i3DPost [18], is adopted in performance
evaluation. This dataset contains 96 high-resolution RGB
video sequences of 12 action types performed by 8 actors.
These actions were recorded by multiple cameras with 8 differ-
ent viewpoints. These actions recorded by multiple cameras
with 8 different viewpoints. Each of these cameras was ar-
ranged to have 45 ◦ difference with its direct neighbors so that
a full 360 ◦ coverage can be achieved.

Since our method performs visual knowledge borrowing
across distinct data modalities, we use Microsoft Kinect to
build up an multi-modal action database which contains the
RGB frames, the depth maps and the corresponding skele-
tons and will be served as the common auxiliary database in
the experiments on the benchmark. The auxiliary dataset is
composed of 40 distinct action classes. Total 10 actors were
employed in the construction of the dataset.Each action was
recorded by two cameras, respectively located with view an-
gles of 0 ◦ and 45 ◦. Besides, we mirrored each recorded action
for against reflection.

6.1. Baselines

For performance analysis and comparison, we implemented
the following five baselines, each of which is denoted below
in bold and in abbreviation:

RGB: This baseline simply ignores the information from
the auxiliary database. It extracts the RGB features, described
in Section 5, for the actions in the target database and employs
an SVM classifier to make the prediction.

DEP: This baseline is a degenerate variant of our approach.
Recall that our approach augments each RGB action video
with additional depth maps. This baseline discards the original
RGB features and the borrowed skeleton structures. It simply
works on the borrowed depth maps. The adopted features for
depth maps here are those described in Section V.

SKE: This baseline is the same as DEP, except the used
data features are changed from the borrowed depth maps to
the borrowed skeleton structures.

6.2. Experiment Settings and Quantitative Results

To make a fair comparison, we adopt the setup, Leave-One-
Actor-Out (LOAO) cross validation, which is also used in [17].
The recognition rates of our approach, the three baselines, and
the state-of-the-art systems are reported in TABLE 1. We con-
sider three different cases for performance evaluation in bench-
mark i3DPost, including two singe-view settings (single-view
0 ◦ and single-view 45 ◦ for abbreviation), and one multi-view
setting (multi-view 0 ◦∪45 ◦ for abbreviation). Thus, there are
three sets of quantitative results shown in TABLE 1, one for
each case. It is worth mentioning some interesting observa-
tions. The baseline Bor-DEP and Bor-SKE are comparable or
even better than baseline RGB. This phenomenon indicates
that depth maps and skeleton structures are discriminative for
actions in i3DPost. Our approach can effectively borrow fea-
tures across video modalities, and leverage both the original
and the borrowed features to result in much better accuracy
rates. The performance gains of our approach over baseline
RGB are significant in all the three settings, i.e.8.3% (95.2%-
86.9%) in single-view 0 ◦, 4.8% (96.4%-91.6%) in single-
view 45 ◦, and 9.6% (94.7%-85.1%) in multi-view 0 ◦∪45 ◦.
With the aid of cross-modal feature augmentation, our ap-
proach also remarkably outperforms the state-of-the-art sys-
tem [17].

7. CONCLUSION

The new types of imaging devices provide the opportunity
of better solving increasingly complex computer vision tasks,
but their respective limitations are currently hindering the
practical applicability. In the work, we resolve this problem by
proposing an approach that can borrow information from an
offline collected database where multi-modal images taken by
heterogeneous cameras are available. Promising experimental
results demonstrate that our approach can effectively adapt
the variation between different databases, transfer knowledge
across image modalities, and lead to remarkable performance
boosting. In addition, the proposed approach is developed
to carry out cross-modal information borrowing in a general
way. It can be applied to a set of applications where multiple
image modalities are appreciated, such as gesture recognition,
human pose estimation, scene understanding, content-based
multimedia analysis and recommendation.
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