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ABSTRACT

This work studies the design of linear precoders for co-
operative multi-cell MIMO downlink systems with finite
alphabet inputs. Traditionally, multi-cell MIMO downlink
precoder designs rely on Gaussian input assumption, which
may lead to performance loss when the true inputs admit
discrete non-Gaussian symbols. In this work, we present
optimized precoders by maximizing weighted sum rate (of
finite-alphabet-input) under a set of single basestation power
constraints. Specifically, we propose a simple gradient al-
gorithm for general multi-cell MIMO downlink channel and
a block diagonalization gradient algorithm while supporting
interference cancellation.

Index Terms— Multi-cell downlink , linear precoding,
finite-alphabet input, gradient descent, dual decomposition.

1. INTRODUCTION

Cooperative transmission in multi-cell MIMO downlink
channel (MC-MIMO-DLC) has been a topic that attracted
growing interest in recent years, as a promising technology
for cellular interference management. Among various ap-
proaches, cooperative precoding has shown substantial rate
improvement when given channel state information (CSI)
and when data streams are available to all base stations (BSs)
[1]. An MC-MIMO-DLC resembles MIMO broadcasting
channel (BC) except for the stricter per-BS (or per-antenna)
power constraints (rather than the sum-power constraint).
Although the uplink-downlink duality and capacity-reaching
dirty paper coding (DPC) scheme can be generalized [2, 3],
their implementation difficulty has made suboptimal precoder
design such as linear precoders more favorable.

While existing linear precoder design approaches for MC-
MIMO-DLC are mostly based on Gaussian input assumption,
practical communication systems have input signals from
finite-alphabet constellation. This difference leads to con-
siderable gap between the actual rate and the capacity. Such
mismatch can often degrade the performance of Gaussian
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input based methods. Noting this key discrepancy and mis-
match, our linear precoder designs for MC-MIMO-DLC shall
specifically target finite-alphabet inputs.

There exist several linear precoder design algorithms for
maximizing weighted sum rate (WSR) in MC-MIMO-DLC.
Due to the non-convexity of the problem formulation, most of
them rely on numerical alternating methods, including mean
square error (MSE) receiver/weighting matrix update - pre-
coder optimization [4, 5], and interference/leakage update -
precoder optimization [6]. When block diagonalization (BD)
constraint can be enforced, the MC-MIMO-DLC becomes
simpler and the WSR maximization problem with per-BS
power constraints becomes, convex. A dual-decomposition
based, cooperative, multi-cell BD precoder design method
is proposed in [7] and two other suboptimal solutions are
provided in [8]. As a special case, beamforming of MC-
MIMO-DLC can be found in [9, 10].

Although the aforementioned studies are all based on
Gaussian input assumption, linear precoder optimization for
finite alphabet inputs has been investigated for several sce-
narios including single user MIMO [11, 12], MIMO BC [13],
MIMO multiple access channels (MAC) [14], MIMO relay
channels [15, 16], MIMO hybrid-ARQ (HARQ) [17], as well
as MIMO wiretap channels [18]. Each case demonstrates
performance gain over the laissez faire use of their Gaussian
based precoder design counterpart.

To the best of our knowledge, there has been scant re-
search on precoder design for MC-MIMO-DLC under finite-
alphabet inputs. In this work, we examine the linear finite-
alphabet precoder design problem in MC-MIMO-DLC under
per-BS power constraint. We first derive a simple gradient-
descent precoder optimization algorithm. To avoid the time-
consuming Monte-Carlo numerical evaluation, we generalize
the rate approximation and its gradient in [19] to MIMO-BC
model [13] while incorporating the per-BS constraint. Next,
we include the BD restriction to our precoder design scheme
and subsequently decompose the WSR objective into single
user rate objectives. We enable a nontrivial extension of the
alternating optimization algorithm in [12]. This is achieved
by applying the dual-decomposition technique [7, 20] to the
newly formulated convex power allocation subproblems un-
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der per-BS power constraints. Our numerical test results
show that both our proposed design algorithms outperforms
the Gaussian based designs, particularly in the medium SNR
regime.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

Consider a cellular network consisting of A cells, each hav-
ing a BS with Nt Tx antennas. The a-th cell has Ka mobile
stations (MS’s) each equipped with Nr Rx antennas. The to-
tal number of MSs is K =

∑A
a=1Ka and the total number

of TX antennas equals N = ANt. The received signal at the
k-th MS is given by

yk = Hkxk +
∑
i6=k

Hkxi + zk, k = 1, . . . ,K (1)

in which xk ∈ CN×1 is the transmitted signal vector intend-
ed for the k-th MS. Hk ∈ CNr×N is the normalized channel
matrix from the virtual BS formed by the set of BSs to the k-
th MS with tr

(
HkH

H
k

)
= Nr. zk ∼ CN (0, σ2I) is receiver

noise. We assume a full cooperative scheme where the chan-
nel state information (CSI) is perfectly known to all BSs and
MSs involved.

The linear precoding is represented as

xk = Pksk, k = 1, . . . ,K (2)

where Pk ∈ CN×Nr denotes the precoder and sk ∈ CNr×1

denotes the finite-alphabet data vector for the k-th MS. Ele-
ments in sk is independent and uniformly distributed from a
constellation of size M , with zero mean and unit variance.

Throughout this paper, we strive to maximize the weight-
ed sum rate as a function of the precoders

R({Pk}) =

K∑
k=1

µkRk({Pk}) (3)

where the k-th MS achievable rate Rk({Pk}) is the same as
its counterpart in MIMO-BC given by Proposition 1 in [13].
Let Nt be the normalized maximum transmit power of each
BS. The per-BS power constraints are given by
K∑
k=1

‖BaPk‖2F =

K∑
k=1

tr
(
BaPkP

H
k

)
≤ Nt, a = 1, . . . , A

(4)
with Frobenius norm ‖ · ‖F while Ba is defined in [7] as

Ba := Diag(0, . . . , 0︸ ︷︷ ︸
(a−1)Nt

, 1, . . . , 1︸ ︷︷ ︸
Nt

, 0, . . . , 0︸ ︷︷ ︸
(A−a)Nt

). (5)

The challenges from this new formulation beyond exist-
ing works are twofold. First, this constrained optimization
problem is non-convex, which compels the search for sub-
optimal solutions. Second, evaluating the finite-alphabet rate
Rk({Pk}) in Eq. (3) requires time-consuming Monte-Carlo
statistical sampling for non-trivial model settings. In the fol-
lowing section, we will address these two challenges in the
development of our algorithms.

3. PRECODER DESIGN
3.1. Simple Gradient-Descent Precoder (S-GDP)
Gradient descent method is a common way for finding local
optimal [21]. Our obstacle lies in the need to repeatedly e-
valuate the rate (for finite-alphabet inputs) and its gradient
using computationally costly Monte-Carlo. This is particu-
larly costly for MC-MIMO-DLC as the interferences are also
finite-alphabet. To tackle this problem, we generalize the ap-
proximation for non-interference channel in [19] to the inter-
ference channel in our problem.

Denote constellation vector index set I = {1, . . . ,M}
and its K-ary and (K − 1)-ary Cartesian products as A =
{(p1, . . . , pK)|pi ∈ I} and Ak = {(p1, . . . , pK)|pi ∈ I, i 6=
k}, respectively. Then the approximation toRk({Pk}) is giv-
en by

R̂k({Pk}) = log2M +
1

MK−1

∑
mk∈Ak

log2

∑
nk∈Ak

umknk

− 1

MK

∑
m∈A

log2

∑
n∈A

vmn (6)

in which umknk
= exp(−cHmknk

cmknk
/2σ2) and vmn =

exp(−dHmndmn/2σ
2), where cmknk

= Hk

∑
j 6=k Pjemj ,nj

and dmn = Hk

∑
Pjemjnj

. Here mj , nj are the entries of
index vectors mk/m and nk/n, and emjnj = s(mj) − s(nj)

denotes the difference between the mj-th and nj-th constel-
lation vectors.

The gradient of R̂k({Pk}) with respect to (w.r.t.) pre-
coder Pi, according to [22], is given by

∇Pi
R̂k|i6=k = −HH

k Hk

2 ln 2σ2 ∑
mk∈Ak

∑
nk∈Ak

umknk

(∑
j 6=k Pjemjnj

)
eHmini

MK−1
∑

nk∈Ak
umknk

−
∑
m∈A

∑
n∈A vmn

(∑
Pjemjnj

)
eHmini

MK
∑

n∈A vmn

) (7)

∇Pk
R̂k = −HH

k Hk

2 ln 2σ2

∑
m∈A

∑
n∈A vmn

(∑
Pjemjnj

)
eHmknk

MK
∑

n∈A vmn
.

(8)
To enforce the per-BS power constraints during gradient de-
scent, we project the updated precoders to a feasible solution
in each iteration. [23] discussed several projection methods.
Here we use a straightforward projection Proj(Pk) = TPk

where T is aN -by-N block-diagonal matrix with its a-thNt-
by-Nt block-diagonal element as:

Ta =

{
INt if

∑K
k=1 ‖BaPk‖2F ≤ Nt;√

Nt∑K
k=1 ‖BaPk‖2F

INt
otherwise.

(9)
Now we are ready to summarize the steps of our Simple

Gradient-Descent Precoder (S-GDP) optimization algorithm:
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S1 Select a feasible set of initial precoders {Pk}.
S2 Evaluate the approximated weighted sum rate (AWSR)

R̂({Pk}) =
∑K
k=1 µkR̂k({Pk}) and its gradients

∇PiR̂({Pk}) =
∑K
k=1 µk∇PiR̂k({Pk}) for i =

1, . . . ,K. Determine the step size t with backtracking
line search method [21].

S3 For k = 1, . . . ,K, evaluate P∗k = Pk+t∇Pk
R̂({Pk}).

Then get the updated precoders by Pk ← TP∗k.
S4 Return to S2 until convergence.

3.2. Block Diagonalization - Alternating Gradient-Descent
Precoder (B-GDP)
Although the S-GDP algorithm is straightforward, the inter-
ference term makes R̂({Pk}) highly non-convex. Thus, we
need good initial precoders to achieve good performance.
Each MS also needs to decode the finite-alphabet interfer-
ence for rate benefit. Moreover, computational complexity
required for evaluating R̂k and ∇Pk

R̂k grows rapidly fol-
lowing O(K3NNr(M

2K + N)) w.r.t K. However, when
N ≥ KNr, it is possible to focus on block-diagonalization
(BD) precoding scheme that is substantially simpler and per-
forms well in high SNR regime. BD achieves some convex
property and reduces computational complexity.

Denote Gk = [HT
1 , . . . ,H

T
k−1,H

T
k+1, . . . ,H

T
K ]T whose

null space V̄Gk
can be derived from the singular vector de-

composition (SVD) as Gk = UGk
ΣGk

[VGk
, V̄Gk

]H . By
restricting Pk = V̄Gk

P̄k, the interference-free channel for
the k-th MS is H̄k = HkV̄Gk

. Denote the SVD of P̄k as
P̄k = UP̄k

ΣP̄k
VH

P̄k
. Although Proposition 2 in [12] is no

longer valid due to per-BS power constraints, we can still get
the following equivalent channel if we align UP̄k

to the right
singular vectors of H̄k, as if the inputs were Gaussian or we
were considering a point-to-point MIMO system with finite
alphabet inputs [24]:

ȳk = ΣH̄k
ΣP̄k

VH
P̄k

sk + z̄k. (10)

The approximated rate for the k-th MS is [19]

R̄k(Σ2
P̄k
,VP̄k

) = log2M −
1

M

M∑
m=1

log2

M∑
n=1

wmn (11)

where wmn = exp(−eHmnWkemn/2σ
2), emn = s(m)− s(n)

and Wk = VP̄k
Σ2

P̄k
Σ2

H̄k
VH

P̄k
. Its gradient w.r.t Wk is

∇Wk
R̄k =

M∑
m=1

∑M
n=1 wmn(emneHmn)

2 ln 2σ2M
∑M
n=1 wmn

. (12)

Similar to [12], we attempt to maximize the AWSR by
alternatingly solving

max R̄k(VP̄k
|Σ2

P̄k
), k = 1, . . . ,K; (13)

max
∑K

k=1
µkR̄k(Σ2

P̄k
|VP̄k

), (14)

s.t.
∑K

k=1
tr(BaV̄Gk

VH̄k
Σ2

P̄k
VH

H̄k
V̄H

Gk
) ≤ Nt.

Problem (13) can be solved with a Stiefel manifold based
method [16] in which the line-search direction is

∆VP̄k
= ∇VP̄k

R̄k −VP̄k
(∇VP̄k

R̄k)HVP̄k
, (15)

∇VP̄k
R̄k = (∇Wk

R̄k)HVP̄k
Σ2

P̄k
Σ2

H̄k
. (16)

The convex problem (14) can be solved by dual decom-
position [7, 20]. Denote γ = (γ1, . . . , γA)T � 0 as the dual
variables. We alternatingly solve the K individual subprob-
lems max fk(Σ2

P̄k
|γ), k = 1, . . . ,K, where

fk(Σ2
P̄k
,γ) = µkR̄k(Σ2

P̄k
|VP̄k

)

− tr(BγV̄Gk
VH̄k

Σ2
P̄k

VH
H̄k

V̄H
Gk

)
(17)

and Bγ =
∑A
a=1 γaBa with the barrier function - gradient

descent - backtracking line search method [16, 21] and solve
the primal dual problem min g(γ) where

g(γ) =

K∑
k=1

max
Σ2

P̄k

fk(Σ2
P̄k
,γ) +Nt

A∑
a=1

γa (18)

with gradient descent method. The gradient of fk(Σ2
P̄k
|γ)

and the subgradient of g(γ) are given, respectively, by

∇Σ2
P̄k

fk = Diag
(
Σ2

H̄k
VH

P̄k
(∇Wk

R̄k)HVP̄k

− VH
H̄k

V̄H
Gk

BγV̄Gk
VH̄k

) (19)

∇γag = Nt −
K∑
k=1

tr(BaV̄Gk
VH̄k

Σ2
P̄k

VH
H̄k

V̄H
Gk

). (20)

We now briefly summarize the steps of our BD Alternat-
ing Gradient-Descent Precoder (B-GDP) algorithm:

B1 Evaluate ΣH̄k
, VH̄k

. Choose initial γ(0), {VP̄k
} and

{Σ2
P̄k
}.

B2 For k = 1, . . . ,K, update Σ2
H̄k

with the barrier
function - gradient descent - backtracking line search
method. Here we use the logarithmic barrier function
with parameter t [16].

B3 Update the dual variable γ ← (γ − δ∇γg)+ where δ
is a sufficiently small stepsize and (x)+ = max(0, x).

B4 Return to B2 until {Σ2
H̄k
} and γ converge.

B5 For k = 1, . . . ,K, update VP̄k
with the Stiefel man-

ifold - backtracking line search method [16]. The line
search direction is given in Eq. (15).

B6 Return to B2 until {Σ2
H̄k
}, {VP̄k

} converge.
B7 Return the BD precoders Pk = V̄Gk

VH̄k
ΣP̄k

VH
P̄k

,
k = 1, . . . ,K.
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4. SIMULATION TESTS

To quantify and demonstrate the performance of our precoder
designed specifically for finite-alphabet inputs, we compare
our proposed S-GDP and B-GDP with Gaussian based de-
signs in [5] (GP1) and [7] (GP2), respectively. Our multi-
cell MIMO channel entries are random independent circularly
symmetric complex Gaussian (CSCG) variables, in which the
variance of the inter-cell channels are ρ2 times that of intra-
cell channels. In all simulation tests we set A = 2, Nr = 2,
ρ = 0.6 and µk = 1/K. Our input signals range from BPSK,
QPSK, to 8-PSK modulation.

In the first example we test S-GDP against GP1 with
K1 = K2 = 1 and Nt = 2. The initial precoders for GP1
are Pk = [0Nt×Nr

; . . . ; INt×Nr
; . . . ; 0Nt×Nr

] with its a-th
block as the tall identity matrix, a being the cell covering
the k-th MS. We use the results of GP1 as the initial pre-
coders for SGDP. The backtracking line search parameters
[21] in S2 are given in Table 1. We illustrate the convergent
behavior of GP1 + S-GDP cascade at SNR = 4dB in terms
of AWSR/Monte-Carlo WSR in Fig. 1(a). The results show
that GP1 converges after 30 iterations, at which point we
switch to S-GDP method which converges to a higher WSR
after approximately another 20 iterations. The curves of
Gaussian/finite-alphabet input WSR of GP1 and the cascaded
GP1 + S-GDP method versus SNR are plotted in Fig. 2. Ap-
parently, our GP1 + S-GDP cascade uniformly offers a higher
and more consistent WSR than GP1 for finite alphabet inputs
tested.

In the second example we test B-GDP against GP2 with
K1 = K2 = 2 and Nt = 4. We initialize γa = 0.1, ΣP̄k

=√
ANt/(KNr)I and VP̄k

as in Example 1 of [12] with ω =
ν = π/15. In B2 the barrier parameter is updated by t ← 2t
with t0 = 2 and tmax = 104. In B3 we set δ = 7 × 10−4.
The stopping criterion in B4 is ‖∆γ‖/‖γ‖ ≤ 1× 10−4. The
backtracking line search parameters in B2 and B5 of B-GDP
are also listed in Table 1. The convergence behavior at SNR =
12dB can be seen from Fig. 1(b). Note that the WSR is higher
at the start when the per-BS power constraints are violated.
Upon convergence the maximum power overage at the BSs
is 0.0319%. From WSR-SNR results shown in and Fig. 3,
we see that for all 3 constellations, B-GDP outperforms GP2
significantly in terms of WSR, especially in the practically
important medium SNR regime.

5. CONCLUSION

This work investigates the design optimization of linear pre-
coders in multi-cell MIMO downlink channel (MC-MIMO-
DLC) with known finite-alphabet inputs. In our approach, we
first simplify the complexity to evaluate the finite-alphabet
weighted sum rate (WSR) and its gradient by adopting an
approximation to Monte-Carlo sampling and derive a sim-
ple gradient descent algorithm (S-GDP) for precoder opti-
mization. Second, by enforcing block diagonalization restric-
tion whenever possible, we derive an alternating gradient de-

Table 1. Backtracking line search parameters
S2 S-GDP B2 B-GDP B5 B-GDP

α 0.2 0.1 0.8
β 0.5 0.25 0.25

(a) GP1 + S-GDP (b) B-GDP

Fig. 1. Convergence behavior of (a) GP1 + S-GDP and (b)
B-GDP

Fig. 2. Comparison between GP1 + S-GDP and GP1.

Fig. 3. Comparison between B-GDP and GP2.

scent precoder optimization algorithm (B-GDP) based on two
convex subproblems: One uses Stiefel manifold method and
the other utilizes dual decomposition. Our numerical tests
demonstrate the superior convergence behaviors and the per-
formance advantages of both S-GDP and B-DGP algorithms
over existing methods given finite-alphabet inputs.
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