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ABSTRACT

We present a real-time speech-driven facial animation system. In
this system, Gaussian Mixture Models (GMM) are employed to per-
form the audio-to-visual conversion. The conventional GMM-based
method performs the conversion frame by frame using minimum
mean square error (MMSE) estimation. The method is reasonably
effective. However, discontinuities often appear in the sequences of
estimated visual features. To solve this problem, we incorporate pre-
vious visual features into the conversion so that the conversion pro-
cedure is performed in the manner of a Markov chain. After audio-
to-visual conversion, the estimated visual features are transformed
to blendshape weights to synthesize facial animation. Experiments
show that our system can accurately convert audio features into vi-
sual features. The conversion accuracy is comparable to a curren-
t state-of-the-art trajectory-based approach. Moreover, our system
runs in real time and outputs high quality lip-sync animations.
Index Terms: audio-to-visual conversion, GMM, blendshape, facial
animation

1. INTRODUCTION

Facial animation is a hot research topic in both academia and in-
dustry, its applications include movie industry, computer games and
human-computer interaction [1]. In human-computer interaction ap-
plications, a lip-sync talking head can attract the attention of a user,
and make human-machine interaction more effective. It is reported
that the trust and attention of humans towards machines are able to
increase by 30 percent if humans are communicating with talking
heads instead of text-only [2].

A number of researchers have described techniques for synthe-
sizing realistic lip-sync animations [3, 4]. Ezzat et al. [5] synthesize
speech animation by using a recorded video database. The coartic-
ulation effects are represented by the magnitude of diagonal covari-
ance matrices of phoneme clusters. Wang et al. [6] propose a system
which renders a photo-real video of articulators in sync with the giv-
en speech by searching for the most plausible real image sample se-
quence. These methods achieve high realism in synthesized videos.
However, it is challenging to change head pose freely or to render
different lighting conditions. Deng et al. [7] first construct explic-
it speech coarticulation models from real human motion data, then
new speech animations are synthesized by blending 13 key viseme
shapes.

According to the input of the animation systems, talking heads
can be text-driven or speech-driven. Although most text-driven talk-
ing heads employ advanced speech synthesizers [8], they still lack
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natural speech prosody and emotions. Therefore we focus on syn-
thesizing facial animation from real human speech.

Audio-to-visual conversion is the core of speech-driven facial
animation. Various approaches have been proposed to model the re-
lationship between audio and visual features. Hidden Markov mod-
els are widely used in audio-to-visual conversion [8, 9], an advan-
tage of the these approaches is that context information can be easily
represented by state-transition probabilities. However, they usually
require a phoneme sequence that is provided by an automatic speech
recognizer. The synthesis performance heavily depends on the Viter-
bi search. The Viterbi sequence may represent only a small fraction
of the total probability mass, and many other slightly different state
sequences potentially have nearly equal likelihoods [10].

In contrast to the phoneme-based conversion, direct conversion
without using phonetic information, is also effective. The work p-
resented in [11] shows that automatic speech recognizer based con-
version is inferior to direct conversion in their experiments when a
neural network is used. Besides neural networks, GMM has also
been used for direct conversion [12]. Toda et al. [13, 14] have tested
two different GMM-based methods: the conventional method [15]
and the trajectory-based method. The former runs in real time with
relatively lower performance, the latter has better performance but it
comes with a latency time no less than the length of one utterance.

In this paper, we also use the GMM-based method for audio-
to-visual conversion. The conventional GMM-based method works
in real time. However, the performance of the conversion is insuffi-
cient, discontinuities often appear in the sequences of the estimated
target vectors. To solve this problem, we incorporate previous visu-
al features into the conversion. Based on the proposed method, we
develop a real-time speech-driven facial animation system.

2. REAL-TIME GMM-BASED CONVERSION

2.1. The conventional method

The conventional method converts source features into target fea-
tures frame by frame using MMSE estimation. Let xt and yt be the
source and target feature vectors at frame t, respectively. The joint
probability density of the source and target vectors can be modeled
by a GMM as follows:

P (zt|λ(z)) =

M∑
m=1

wm ·N(zt ; µ(z)
m ,Σ(z)

m ), (1)

where zt = [xt ; yt ] is a joint vector, the total number of mixture
components is M . A parameter set of the GMM is λ(z), the mean
vector µ(z)

m and the covariance matrix Σ
(z)
m of the mth mixture com-
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Fig. 1: Audio-to-visual Conversion. (a) The current visual feature
only depends on the audio feature, (b) The current visual feature
depends on not only the audio feature but also its previous visual
feature.
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Given xt, the estimated target vector ŷt is determined by as follows:

ŷt = E[yt|xt]

=
M∑
m=1

p(m|xt, λ(z))E
(y)
m,t

, (3)

where

p(m|xt, λ(z)) =
wmN(xt;µ

(x)
m ,Σ

(xx)
m )

M∑
n=1

wn ·N(xt;µ
(x)
n ,Σ

(xx)
n )

, (4)

E
(y)
m,t = µ(y)

m + Σyxm Σ(xx)−1

m (xt − µ(x)
m ). (5)

2.2. Proposed conversion method

The conventional method is reasonably effective. However, the per-
formance is of the conversion is still insufficient, discontinuities of-
ten appear in the sequences of the estimated target vectors. The rea-
son is that the conversion is independently performed at individual
frames. The correlations between frames are ignored (see Figure
1(a)). In fact, due to the finite velocity of lip motions, current visual
feature depends on not only current audio feature but also its previ-
ous visual features. The visual feature sequence resembles a Markov
chain shown in Figure 1(b). However, it is a special Markov chain
with a ”knob” (the audio feature) to control the transition probability.

Let yt be the current visual feature and ypt represent its previous
visual feature state. If ypt is always available, we can use a GMM to
model the joint probability density of xt, ypt and yt

P (Zt|λ(Z)) =

M∑
m=1

wm ·N(Zt ; µ(Z)
m ,Σ(Z)

m ). (6)

where Zt = [Xt ; yt], Xt = [xt; y
p
t ].

Given xt, the transition probability density is as follows:

P (yt|ypt , xt, λ
(Z)) =

M∑
m=1

P (m|Xt, λ(Z))P (yt|Xt,m, λ(Z)) (7)

p(m|Xt, λ(Z)) has the same form as that in equation 4 except that
xt is replaced by Xt. P (yt|Xt,m, λ(Z)) is a normal distribution
with mean vector E(y)

m,t and covariance matrix D(y)
m,t,

E
(y)
m,t = µ(y)

m + ΣyXm Σ(XX)−1

m (Xt − µ(X)
m ). (8)

Fig. 2: Overview of the proposed conversion method. It consists of
a principal conversion and an auxiliary conversion.

By using MMSE estimation, the estimated visual vector ŷt is deter-
mined as

ŷt = E[yt|Xt]

=
M∑
m=1

p(m|Xt, λ(Z))E
(y)
m,t

(9)

Then, the problem becomes finding a proper representation of
the previous visual feature state ypt . We can simply use yt−1 as the
previous visual feature state of yt, i.e.

ypt = yt−1 (10)

Our experiments show that if the ground truth value of yt−1 is used,
the estimated vector ŷt is almost the same as its ground truth. How-
ever, the ground truth value of yt−1 is available during GMM train-
ing, but it is unavailable during practical conversion. An alternative
is to use ŷt−1 as an approximate of yt−1. Given an initial value,
the visual feature vector sequence can be estimated in an iterative-
ly way. The problem is that the conversion error generated in each
frame would accumulate. It doesn’t necessarily lead to reasonable
converted results.

To solve the problem, we incorporate an auxiliary audio-to-
visual conversion. The overview of the proposed method is shown in
Figure 2. Our method consists of a principal conversion and an aux-
iliary conversion, The conversion described in equation 9 is referred
as principal conversion. Since the auxiliary conversion deals with
those audio feature vectors in the past, any direct audio-to-visual
conversion method can be used, including affine transformation [16],
artificial neural networks and trajectory-based GMM [14]. Here we
use the conversional GMM-based conversion as the auxiliary con-
version, its number of mixture component is denoted as Ma, and the
estimated visual vector is denoted as ŷt,a.

The conversion procedure is as follows. When the current visual
feature vector xt becomes available, ŷt−L,a, · · · , ŷt−2,a and ŷt−1,a

are obtained by using the auxiliary conversion. Next, the previous
visual feature state is calculated as follows

ypt =
1

L

L∑
i=1

ŷt−i,a (11)

L is the number of frames used to calculate the average. Finally, ŷt is
calculated using equation 9. Since the update of ypt is independent of
ŷt, conversion error will not accumulate. Moreover, ypt is available
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Fig. 3: Overview of the online processing pipeline.

both in training and in conversion. Although ypt is not the ground
truth values of yt−1, it does represent the main trends of the previous
visual feature vectors, the estimated target vector is forced to follow
the main trends.

Audio-visual model training. The training procedure of the t-
wo GMMs is as follows. First, the auxiliary GMM is trained using
training set {xt, yt}. Then, the converted results ŷt,a are calculat-
ed for all samples in the training set using equation 3, and all ypt
are calculated using equation 11. In this way, another training set
{xt, ypt , yt} is obtained. Finally, this training set is used to train the
principal GMM. We train the GMMs using the EM algorithm.

Collecting audio-visual training data. A human subject is
first recorded using a video camera as he/she utters a predetermined
speech corpus [17]. Given the recorded videos and audio, training
data are collected as follows. For each video image, we track 68
facial feature points. The 2D positions of the 68 feature points are
concatenated to form a shape vector s. Principal component analysis
(PCA) is applied to the shape vector, and the resulting PCA coeffi-
cients are used as visual features, so we also refer to yt as PCA coef-
ficients. For each audio frame, Mel-Frequency Cepstral Coefficients
(MFCC) are extracted and adopted as audio features.

3. ANIMATION SYNTHESIS

3.1. System overview

An overview of the online processing pipeline is shown in Figure 3.
Input to the system is the recorded speech, audio features (MFCC
feature vectors) are calculated and fed into the audio-visual convert-
er, resulting in visual PCA coefficients. Since we make facial ani-
mation using a blendshape model, these PCA coefficients need to be
transformed into blendshape weights to drive the virtual character.

3.2. Compute blendshape weights

Blendshape models are very popular in facial animation [18, 19]. For
a blendshape model, animations can be generated by shape morph-
ing or through linear combinations of basis poses.

Similar to [18], we use 39 blendshapes in our examples. Let
b = [b1, b2, · · · ,b39] be the blendshape weight vector. To compute
blendshape weights, we need to create 39 2D key shapes that are in
one-to-one correspondence with those 3D blendshapes. These 2D
key shapes are created as follows. First, we select a 2D key shape
corresponding to neutral face in the training images. Then, we man-
ually define a corresponding model point on the 3D face model for
each feature point of the 2D key shape. Given a 3D blendshape, it-
s deformation can be transferred to the 2D key shape by using an
MEPG-4 based animation framework [20]. In this way, we obtain
39 2D key shapes K = [K1,K2, · · · ,K39]. We assume that these

2D key shapes share the same weights with those 3D blendshpaes
[21].

Given the PCA coefficients yt, the face shape vector st can
be reconstructed using principal components. Then the blendshape
weights are solved by minimizing the following energy

Et =

∥∥∥∥∥
39∑
j=1

bjKj − s

∥∥∥∥∥
2

+ β ·
39∑
j=1

b2j (12)

where β is a constant, and is set to 10 in our experiments. Since
bj ∈ [0, 1], by letting

bj =
1

1 + e−r·θj
(13)

we can solve for θj instead of bj , the constant r is set to 0.2 in
our experiments. Then, it becomes a unconstrained minimization
problem, and can be solved using an iterative gradient solver [22].
The gradient is calculated as follows

∂Et
∂θ

= 2 ·G ·KT (K · b− s) + 2β ·G · b (14)

where θ = [θ1, · · ·, θ39]T , G is a diagonal matrix with diagonal
entries equal to ∂bj

∂θj
.

4. EXPERIMENTAL RESULTS

4.1. Resulting animations

We use the LIPS 2008 Visual Speech Synthesis database [17] as our
audio-visual corpus. This database has 278 video files with corre-
sponding audio tracks, each being one English sentence spoken by a
single native speaker with neutral emotion. The video frame rate is
50 fps. For each video image, we use Active Shape Model [23] to
locate 68 facial features, 10-dimensional PCA Coefficients associat-
ed with each frame are adopted as visual features. For audio tracks,
MFCC vectors are extracted with a 20ms time window shifted ev-
ery 10ms. The visual features are interpolated up to the same frame
rate as the MFCC vectors. Then, the audio-visual feature vectors are
used to train our audio-visual model.

At run time, given novel speech signals, MFCC vectors are cal-
culated and then mapped to PCA coefficient vectors. Finally, the
blendshape weight vectors are computed and used to drive the dig-
ital character. We implemented our system on a PC with an Intel
Core 2 Duo (2.8 GHz) CPU. The system runs in real time at 22 fps.
Fig 4 shows a few synthesized animations.

For more results, please refer to the supplementary video.
(http://home.ustc.edu.cn/%7Eluocw/animation2.wmv).
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Fig. 4: Snapshots from the synthesized speech animation.

4.2. Evaluation

The performance of audio-to-visual conversion is objectively evalu-
ated by the root-mean-square error (RMSE). It is calculated for the
difference between the measured and the estimated PCA coefficient
vectors, i.e.

RMSE =

√√√√ 1

n
·
n∑
t=1

||ŷt − yt||2 (15)

A 1/5 cross-validation test is conducted to measure the accuracy
of the conversion under open conditions. The training samples are
divided into 5 partitions, and then one of the partitions is reserved for
testing by turns, while other partitions are used for training. Finally,
the average RMSE is calculated.

We compare the proposed method with the conventional and the
trajectory-based method [14] under different conditions. In each
case, the number of mixture components is varied from 1 to 140.
For the proposed conversion, eleven frames are used to calculate the
previous visual feature state, i.e. L=11. Ma is set to 40 and 80,
respectively. The RMSE as a function of the number of mixture
components is shown in Figure 5. Figure 5 shows that the RMSE is
greatly reduced after considering the previous features. The reason is
that the estimated visual vectors are constrained by the previous vi-
sual states, many sudden jumps are alleviated. When the number of
mixture components is small, our method outperforms the trajectory-
based method. With increasing number of mixture components, the
trajectory-based method slightly outperforms ours. This is probably
because the dynamic features have been used in the trajectory-based
method, it needs more mixture components to model the joint space
of both static and dynamic features.

Since speech animation is to provide a natural human-machine
communication method, subjective evaluations from human ob-
servers are more appropriate than objective measurements. A sub-
jective mean opinion scoring test was also carried out to compare the
conventional, the trajectory-based and the proposed audio-to-visual
conversion methods. We randomly select 6 sentences from the LIPS
2008 database. Then we synthesized 6 facial animation videos for
each of these three methods. Each video also includes the ground
truth input speech audio. Ten volunteers are required to score the
animations in two facets: smoothness and audio-visual consisten-
cy from 1 (worst) to 5 (best). The results of the scoring are shown
in Table 1. It is shown that the scores for the proposed method is
much higher than the conventional GMM based method. Again, the
trajectory-based method is slightly superior to ours. However, our

Fig. 5: The RMSE as a function of the number of mixture compo-
nents.

method converts audio to visual in real time while the trajectory-
based method has a latency time no less than the length of one utter-
ance. Thus, our method is more suitable for real-time system.

Table 1: The averaged subjective scores for smoothness and audio-
visual consistency

conventional proposed trajectory based

smoothness 3.22 4.15 4.28
consistency 3.01 3.93 4.06

5. CONCLUSIONS

We propose a real-time audio-to-visual conversion method based on
GMM. We assume that the current visual feature depends on not on-
ly the speech signal but also its previous visual features, and then the
visual feature sequence behaves as a Markov chain. A GMM is used
to model the transition probability density. Since the ground truth
values of the previous visual feature states are unavailable during
conversion, we incorporate an auxiliary conversion which provides
previous visual feature states for the principal conversion. After
audio-to-visual conversion, the visual features are transformed in-
to blendshape weights to synthesize speech animations. The output
speech animations are quite realistic, and the synthetic lip motions
synchronize well with the speech.

6. RELATION TO PRIOR WORK

Our work focuses on speech-driven facial animation synthesis. For
audio-to-visual conversion, we incorporate previous visual features
into the conversion to avoid sudden jumps of estimated visual fea-
tures, while the earlier work in [15] only uses current audio feature.
To compute blendshape weights, Cao et al. [19] make use of manu-
ally created animations to define animation priors, this procedure is
very exhausting. We directly add a regularized item and also obtain
plausible blendshape weights.
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