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ABSTRACT

This paper considers the problem of signal recovery from magnitude
measurements for signals in modulation invariant spaces. It proposes
a measurement setup such that almost every signal in such a signal
space can be reconstructed from its amplitude measurements up to
a global constant phase and with a sampling rate of four times the
rate of innovation of the signal space. The applicability of the pro-
posed scheme under noise measurements is demonstrated by com-
puter simulations.

Index Terms— Phase retrieval, sampling, modulation-invariant
spaces, stationary sequences

1. INTRODUCTION

The problem of recovering a signal from magnitude measurements
of its Fourier transform (also known as phase retrieval) arises in
many different applications. In Fig. 1 the phase retrieval problem
is sketched for a typical setup in optics (assume for the moment that
the mask, shown in Fig. 1, is not present). The object of interest is
illuminated by a light source. This produces a certain diffraction pat-
tern z(t), where ¢ stands for the spacial coordinate. This diffraction
pattern contains the information about our object and the lens trans-
form z into the Fourier domain. There the intensity |Z(w)|? of the
Fourier transform Z(w) is measured and sampled on a certain regular
grid with frequency spacing 5. The phase retrieval problem is now
to reconstruct the diffraction pattern z(¢) from the set of discrete
intensity measurements {|Z(n3)|*}nez.

Recently this phase retrieval problem has attracted some interest.
For signals in finite dimensional spaces, [1] proposed an approach
which applies a large number of intensity measurements to compen-
sate for the loss of phase information. The paper derived necessary
and sufficient conditions on the number on intensity measurements
such that signal recovery becomes possible. Now it seems to be clear
that in a N-dimensional space 4N — 4 measurements are necessary
and sufficient [2]. A related question is how to design the measure-
ment vectors such that signal recovery is possible. In [3] a class of
measurement vectors was proposed which allows for a simple ana-
Iytic signal reconstruction. Nevertheless, M = N? measurements
are needed in this case. Ideas from convex optimization where ap-
plied in [4, 5, 6] for phaseless signal recovery using O(N log N)
random measurement vectors.

Only few results exist for infinite dimensional signal spaces. In
[7] it was shown that real valued bandlimited function can be recon-
structed from amplitude measurements taken uniformly at twice the

This work was partly supported by the German Research Foundation
(DFG) under Grant BO 1734/22-1.

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE 46

Fanny Yang
Department of EECS
University of California-Berkeley
Berkeley, CA 94720, USA
fanny-yang @berkeley.edu
object mask lens Fourier domain
z - [l gy
o z2e
gz §55
g2 £ %9
= — g g

Fig. 1. A typical setup of a phase retrieval problem in optics.

Nyquist rate. However, this approach can not be extended to com-
plex signals. In [8] it was shown that complex-valued, time (resp.
spatially) limited signals can be reconstructed from amplitude mea-
surements taken with a rate of at least 4 times the Nyquist rate and by
applying particular structured modulations before signal sampling.
Also a corresponding recovery procedure was proposed.

The assumption that the signal is perfectly time (or spatially)
limited may be too restrictive in some situations and more flexible
signal spaces are often desirable. Therefore, the present paper ex-
tends the approach from [8] to a larger signal class, namely to so
called modulation-invariant spaces. It is shown that a sampling rate
of four times the rate of innovation of the signal space is sufficient
for perfect reconstruction. Numerical simulations will show that our
approach is applicable also under disturbances of the measurements
by additive noise.

2. SIGNAL MODEL AND NOTATIONS

Notations The Hilbert space of square integrable functions on the
real axis R, equipped with the usual inner product, is denoted by
L?(R). For every z € L?(R) its Fourier transform is given by

T(w) = (Fr)(w) = [pz(t)e ™ dt, weR.

Let 7 > 0 be arbitrary then the unitary translation and modulation
operator on L (R) is defined by

Tr:z(t)—»2z(t—71) and M, :z(t) = z(t) e,
respectively. In the following T stands for the interval [0, 2] on the
real axis R and for any 1 < p < oo we write L?(T) for the usual
Lebesgue space of functions on T.



The Signal Space and its Characterization Let g € L?(R) and
7 > 0 be arbitrary. We consider signals in spaces of the form

G, :=span{ gn(t) :== (M7g)(t) = g() ™™ : n€Z} (1)

where the closure is taken in L?(R). Such spaces are usually called
modulation-invariant subspace of L?(R) with generator g, and the
sequence g := {gn }nez in L2(R) is the generator sequence of G..
It is not hard to see that g forms a stationary sequence in L?(R) [9]
and its correlation function has the spectral representation

(Gn gm) 2wy = 3 Jr "™ By (9) do
with the spectral density ® 4, which is given by [9]
us us 2
Dy(0) = 21 >kez |g (%)' )
With the spectral density ®4 of g we associate the set
Mg:={0€T: ®4(0)>0}.

It characterizes in some sense the redundancy of G [10]. We always
assume that the generating sequence g forms a frame for G.. Then
every £ € G, can be represented as

2(t) = Y ez an gn(t) = 9(t) T,z ane™™ ©)

with a coefficient sequence @ = {an}nez € £2. It can be shown
that g is a frame for G if there are positive constants A, B such that

A< ®y4(0) <B foralmostall 6 e Mgy

0eT. V)

and g is a Riesz basis for G, if additionally the Lebesgue measure
of Mg is equal to 27 [9]. If g is a frame but not a Riesz basis
for G, then x € G, does not uniquely determine the correspond-
ing coefficient sequence a. However, the Fourier series A(f) =
> nez an €™ is uniquely determined on Mg, and the Fourier se-
ries associated with the so-called canonical coefficient sequence is
characterized by the property that A(f) = 0 for all § ¢ M,.

Similarly, we may describe our signal space in the Fourier do-
main. Then the Fourier transform Z of every signal z € G, belongs
to the shift-invariant space [11]

G :=5pan{ Gn(w) = (T §)(w) = Glw —n7) : n€Z}
where g is the Fourier transform of the generator g € G,. Therewith,
the Fourier transform of the signal (3) has the form

W) =2neznGn(W) =X,z nglw—n7). (4

Following [12] we say that G, has a rate of innovation of pg = 1/7.
For us it will not be sufficient that the generator of G belongs to
L?(R). Instead we require that it satisfies the following condition.

Condition G: Let g be a function on R. We say that g satisfies Con-
dition G if there exist two constants C > 0 and € > 0 such that

g <C @+ t)~ O forallteR. )
Remark: If g satisfies Condition G then g € L*(R)N L (R) which
implies in particular that g € L*(R).
Example 1: LetT > 0 be arbitrary. Then the subspace ([T, T])
of all z € L*(R) with support in [T, T is a modulation-invariant
space (1) with generator

9(t) = Gz x-r,m(t) and T< F.

The spectral density, associated with this corresponding generator
sequence, is then ®,4(0) = % X[—r1,-1](6), where x7 stands for
the indicator function of the set 7.
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Fig. 2. Measurement setup with M branches of modulators. A block
with (IM) stand for Fourier transform and intensity measurement.

3. STRUCTURED MODULATIONS

In general, it is not clear whether it is possible to reconstruct a signal
x € G, from the amplitudes of samples |Z(k3)| of its Fourier trans-
form Z and if so, which sampling rate 1//3 is necessary. Results from
finite dimensional phase retrieval [1, 2, 4] even indicate that a simple
(over) sampling of |Z(w)| is not sufficient for signal reconstruction.
But rather more specific measurements are needed, i.e. that slightly
more general measurement functionals have to be applied.

In optical applications such measurement functionals are ob-
tained by inserting specific mask between the object and the lens, as
sketched in Fig. 1. Each mask has a specific transmittance function
Dm (t) such that the signal samples obtained with mask m become

[ (nB)] = ] / w(®)pm(t) e dt = |(m,57) |,

where the functions s{™ (t) := pm(t) e7 A" are determined by the
mask and the sampling interval 3. If the complex valued inner prod-

ucts (z, sﬁm)) would be known then it would be fairly easy to deter-
mine a sequence {sﬁlm)} such that every € G- can be reconstructed
[13]. However, if only the amplitudes of these inner products are
known then it is not known which conditions the sequence {sﬁm)}
has to satisfy such that signal recovery is always possible.

In [8] a specific choice of the masks p,, was proposed such that
every z € L*([~T,T]) can be recovered from its amplitude sam-
ples. It will be shown here that using the same masks and under
some conditions on the generator g, every signal in any arbitrary
modulation-invariant subspace of the form (1) can be reconstructed
from its intensity measurements in the frequency domain.

Fig. 2 sketches schematically the setup of Fig. 1. The masks in
Fig. 1 correspond now to a bank of M modulators. It is assumed that
these modulators have the following general form

Pm(t) i= Son | G @k (©)

where A\ and o,k are complex coefficients which are determined
subsequently and where the bar denotes the complex conjugate.
Assuming this form of the modulators, it is easily verified that for
any ¢ € L*(R) the intensity measurements in Fig. 2 are given by

)

K 2
™ =15 () = D @mr 2(nB + M)
k=1

= |(Rn,0m)ex|?>, m=1,...,M;neZ. (7)

with the length K vectors
Qm,1 Z(nB + A1)
Q1= : and X, := :
Qm, K Z(nB + Ak)



4. SIGNAL RECONSTRUCTION

As in [8] the signal reconstruction is a three step procedure. In the
first step, a finite number of signal samples of Z are recovered from
the available amplitude measurements (7). In the second step, these
finite blocks of Z are matched to eliminated unknown phase terms in
each block. Finally the signal x is obtained by interpolating .

1. Finite Dimensional Phase Retrieval For every fixed n € Z
equations (7) constitute a K-dimensional phase retrieval problem
for the unknown vector X,,. It is known that one can find vectors
am, € C¥ such that X, can be recovered up to a constant phase
factor from the M amplitude measurements &A™, In particular, if
the measurement vectors o, form a 2-uniform M/K-tight frame
with M = K? vectors then every X, € C¥ can be reconstructed
from the measurements (7) based on the following formula [1]

1~ m -
Q.= nglcgl V(K +1) amag, —Ix] ®

where Q,, = X, X}, is a K x K matrix of rank 1, and I stands for
the K x K identity matrix. All values on the right hand side of (8)
are known. Thus one can determine the matrix Q,, and factorize it
as Q, = X, X;,. This yields the vector X,, up to a constant phase
factor, i.e. one obtains X,e'" where ., is an arbitrary phase which
can not be determined due to the factorization of Q..

2. Phase Propagation The different phase factors ', obtained
for each block X, have to be matched because all blocks originate
from the same overall signal Z. To this end, we allow for an overlap
between consecutive sets of interpolation points, i.e. we require that
foreveryn € Z

B+ M1 N{[n+ 1B+ A }ry #0.
Clearly, such an overlap my be achieved by choosing
Ak=M+0. (&)

Then nB+Ax = (n+1)B+A; foralln € Z, i.e. there is an overlap
between consecutive vectors Xy, in the sense that the last entry of X,
is equal to the first entry of Xp,41.

Now we may start signal recovery at a certain index no € Z,
determine Xy, and set the phase 6, arbitrary. In the next step we
determine Xn,+1 and use the overlap between X, and Xp,+1 to
propagate the phase information from one vector to the next one. In
this way, we are able to determine all vectors {Xn }ncz up to one
unknown global phase factor [8]. At the end of this step, we know
all vectors X, which means that we know 7 at the frequency points
nB+ A\ withn € Zandk=1,..., K — 1.

3. Interpolation Now the frequency points n3 + A have to be
chosen such that every z € G, can be reconstructed from the known
values of T at these points. For simplicity of the presentation, we
focus in this paper on the situation where the set of interpolation
points is uniformly distributed on any horizontal axis of the complex
plan. The following theorem considers the particular situation where

U {nB + Meticr = {mThmez

neEL

and it shows how = € G, can be reconstructed from such frequency
measurements.
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Theorem 1: Let G, be a modulation invariant space of the form (1)
with generator g which satisfies Condition G. If there exists a con-

stant D > 0 such that
27 0+ k27
()
keZ
Then every x € G, can recovered from its frequency samples
{Z(n7)}nez by

2(t) =Y B(nT) $nlt) with $u(t) = (M7e)(t)

nez

G(9) = >D forae §ec Mg.

(10)

and where the generator ¢ of the interpolation kernels is given by

A () N
27 3 en9(t+k2E)
Remark: In the definition of ¢ in (11) it should be understood that

¢(t) = 0 for all ¢ € R where the denominator of the fraction on the
right hand side is equal to zero.

b(t) an

Proof: Let x € G, be arbitrary. Since {gn }nez is assumed to be
a frame for G, there exists a unique canonical coefficient sequence
a = {an }nez such that z can be written as in (3). By (4), we have

Yoo @k g([n — K]7)
= [LA0) G(6)e ™" df

F(nr) =

(12)

with A(0) = >,z ax ¢'*® € L*(T) and where we applied Poisson
summation formula (cf. Lemma 3 in the Appendix) to obtain

> rez 9(kT) et = 27” >kezd (%) =:G(0) .
Consequently (12) becomes
X(0) =3, B(nT)e™ = A(6) G(6).

Since G € L°°(T) and A € L*(T) it follows that X € L*(T).
Therefore the coefficient sequence a can be determined from
{Z(n7)}nez by a linear filter

an = ZkeZ Y Z([n — k]7) (13)

with transfer function

; 1/G(6) if §eM
F(9)=Z’7kek9={ /0() i g
ke€Z

where it was used that a is the canonical coefficient sequence such
that A(9) = 0 for all § ¢ M. Finally, we plug (13) into (3) and a
straightforward calculation gives (10). [

To apply Theorem 1 we have to choose the coefficients A\, and
the sampling period as follows:

B=(K-1)T1, A1 = arbitrary ,

, (14)
)\k=>\1+(k—l)ﬁ for k'=2,3,...,K.

Therewith the overlap condition (9) is satisfied and one gets
(BB + M) hney " T = {B(mT + M)} e = {8(MT)} s

with U(z) := Z(z + A1). Then Theorem 1 can be applied to @.



Overall Reconstruction Algorithm To summarize the whole pro-
cedure: To design the measurement system in Fig. 2 for a certain
modulation invariant signal space G, one has to

e Fix the degree K > 2 of the modulation functions (6).

e Determine M = K? vectors o, in C¥ such that they form a
2-uniform M /K-tight frame (cf. [3, 14]). These vectors de-
termine the coefficients o, of the modulation functions (6).

e Choose the coefficients {\; }X_, of the modulation functions
(6) and the sampling interval 8 according to (14).

Then the reconstruction of any = € G, follows the following steps

1. At every sampling instant n € Z one obtains the M intensity
measurements {c{"™ }}_, from the system in Fig. 2.

2. Determine the vectors X, up to a constant phase factor '~
using (8) with a subsequent factorization of Q.

3. Match the unknown phases over all X,, to obtain the set
{Z(mr + A\ )el%}  _, of signal samples.

4. Interpolate these points using Theorem 1 to reconstruct
x(t) e'% up to a global constant phase factor &%,

The overall sampling rate (signal samples per frequency interval) is

2

_apl_ K2 1_ K
R=Mg=x—57= %P9

K—-1

which becomes minimal for K = 2. Then it is Rmin = 4 pg, i.e.
four times the rate of innovation of the signal space G.

Corollary 2: Let G be a modulation invariant space of the form (1)
with generator g which satisfies Condition G. Then every T € G,
can be reconstructed from intensity measurements of T taken at a
rate of R > Ruin = 4pg = 4/71.

Example 2: A setting for the parameters M, K, § and the coeffi-
cients Ai, om, i in the setup of Fig.2 which achieves the minimal
sampling rate Ryin, is givenby K =2, M =4, 8 = 7, and

N

with constants a = 4/ (1 — 1/v/3) and b = €*/%, /1(1 + 1/+/3).

Moreover A\; = 0 and A2 = S such that the vectors X,, become

%n = [2(nB), T(In +1]8)]" .

5. NUMERICAL SIMULATIONS AND DISCUSSION

To verify the applicability of our approach we performed numer-
ical simulations. To this end, we fixed a modulation invariant
signal space G, with generator g equal to a B-spline of order 2
[15] and with 7 = 3. The Fourier transform of g is known to
be G(w) = [sin(w/2)/(w/2)]3. 1t easily follows that the spectral
density ®g(0) is strictly positive and bounded on T such that the
sequence {g,(t) = g(t) €™ " }nez is a Riesz basis for G,. Signals
x € G, were produced by z(t) = 271:;_ N @ngn(t) from a se-
quence {a, } of independent, equally distributed, complex Gaussian
random variables. In the frequency domain, the signal Z has the form
(4) and because g is mainly concentrated in the interval [—2, 27],
the bandwidth of z is essentially equal to Q, = 2[N7 + 27, i.e. it
is basically proportional to the degree N. We applied the sampling
setup as in Fig. 2 with parameters given in Example 2 and deter-
mined an estimate Z(¢) of z(t), using the reconstruction procedure
described above, from the noisy measurements

m=1,...,.M

n=0 41, .. tNpa, &

e = G (o) [* + 05
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where Niax Was chosen as the largest integer such that | Nmax7| <
N7 + 27, and where ™ ~ N (0, 02) are independent, normally
distributed, complex random variables with variance 2. For every
signal we determined the average power density of the signal

08 = T ot Lon s W I (07
and determined o2 such that a certain prescribed signal-to-noise ra-
tio (SNR) ¢ = ¢2/02 at the detector is achieved. After signal re-
construction, the relative means square error (MSE) is determined as
MSE = ||z — 7||3/||z||3. Therein, we substituted the correct phase
from z(¢) for the unknown constant phase factor associated with Z.
Simulation results where averaged over 10° random signals = € G..

—o—N=10 | |
—=—N=30
—#—N=60
—A—=N=100

relative MSE (dB)

=251

3oLt i i

3‘0 3‘5 40 45 50 55
SNR (dB)

Fig. 3. Simulation results for signals = with different degrees IV, i.e.
for signals with different bandwidths Q. = 2 [NT + 2nx].

Fig. 3 shows the relative MSE versus SNR for different signal
degrees N. It verifies that the proposed method basically works and
recovers perfectly any signal from G, as the SNR goes to infinity.
Nevertheless, the simulation results also show that the relative MSE
grows proportional with IV, i.e. proportional with the number of
measurements taken in the frequency domain.

In future research, it is an interesting question whether the
MSE can be improved by the application of different reconstruction
schemes or whether the stability behavior is already determined by
the measurement setup.

6. APPENDIX A - POISSON SUMMATION FORMULA

Lemma 3: Let g be a function on R which satisfies Condition G and
let T > 0 be arbitrary. Then we have

G(0) = Y yez Gkr) ™ = 20 37, L, g (75227)
for almost all 6 € T and G € L*(T).

Proof: Condition G implies that g € L*(R) and that the function
on the right hand side of (16), i.e.

F(0) = %7 Yher 9 (775)

belongs to L*(T) C L*(T). Consequently, we can write F as a
Fourier series F(0) = Y, _, fn €™ with Fourier coefficients

1 27 —in6 1 27 0 ind
= F in — - + k27 in 0
f 7277/0 (@) e de E T/o g (4tk27) e d

keZ

(16)

0cT

-1 /Oo g(&) e ™de= /_oo g (W) e dw = G(n1)

T

using that by Fubini’s theorem the sum and integral can be ex-
changed since g € L* (R). Thus, we obtained (16). n
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