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ABSTRACT

The authenticity verification of a User Generated Audio-Video con-
tent relative to a real event can be a very critical task especially when
the content is shared on the Internet. Audio-Video files need to be
checked in order to verify the origin of the content and the absence
of alterations that could have changed their semantic content.

The paper presents a multimodal approach for audio tampering
detection that analyzes both the audio component and the video com-
ponent of a recorded video file. The proposed solution estimates the
volumetric characteristics of the environment where the multimedia
content has been captured both from the video and audio signals.
Then, the approach checks the consistency of the environment char-
acteristics estimated from the audio signal with respect to those esti-
mated from video files. The proposed solution proves to be useful in
identifying video fakes and bootlegs, although it proves to be useful
for the localization of added audio effects in a movie or radio track.

1. INTRODUCTION

Every day thousands of real events, video messages, artistic perfor-
mances, newscast or videoblog posts are recorded by a video camera
and distributed by uploading the recorded material on data sharing
web sites[1]. These contents are generated by different users that au-
tonomously acquire and upload the digital video file by themselves.
Since the originating environment and users can not be controlled,
it is impossible to state a-priori whether a given video content is a
fake (i.e., it has been tempered) or it is original. One of the most
frequent alterations that is performed on video files regards the au-
dio track, which can be replaced (e.g., lip dub, studio-edited video,
etc.) or altered (e.g., fake sounds, canned laugh and applauses, etc.).
Detecting and localizing these changes proves to be extremely use-
ful in both forensic (e.g., bootleg or fake video detection, copyright
violations, etc.) and in generic automatic audio editing applications
(e.g., canned laugh removal, etc.).

Several forensic analysis strategies have been designed in order
to detect alterations on video [2, 3] and audio [4] contents. These
rely on revealing traces (“footprints”) left on the video signal by
different processing steps, and their combination permits an accu-
rate tamper detection. Unfortunately, both video and audio forensic
detectors prove to be extremely weak in presence of medium-high
compression levels.

The proposed solution aims at adopting a multimodal approach
that combines the forensic analysis of the audio component with that
of the video component. The final aim of the detector is to distin-
guish whether the audio track of the analyzed video sequence has
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been altered with respect to an originally-acquired signal. The de-
tection process relies on an independent estimation of the acquisition
environment characteristics from visual and audio data. Whenever
inconsistencies can be found between the two estimations, it is possi-
ble to conclude that some alteration has been applied since the initial
recording. Notice that fusing information from both audio and video
data is a technique that proves to be very effective to increase the
robustness of a detector [5]. For this reason, when audio and visual
information about the recording environment are compatible, it is
possible to obtain a more accurate environment estimation than that
obtained using a single clue (i.e., only audio or video).

The rest of the paper is organized as follow. Section 2 overviews
other works presented in literature on the matter, and Section 3
presents the general scheme of the adopted solution. Section 3.1 de-
scribes the environment estimation strategy for video signals, while
Section 3.2 presents the environment estimator for audio tracks.
Section 4 presents the experimental results obtained for different
environments and Section 5 draws the final conclusions.

2. RELATED WORKS

Acquiring, editing, storing, and transmitting an image or video are
nowadays extremely-easy tasks due to the widespreading of portable
devices (like smart phones and tablets) equipped with a video camera
and to the availability of multimedia data editing softwares. These
facts have urged the need for effective forensic analysis algorithms
that detect alterations and permits validating the authenticity of a
given content.

Some of the proposed solution focus on the artifacts left by the
acquisition hardware or algorithms. Some of them tries to recover
the Photo Response Non Uniformity pattern [6, 7]. Other approaches
rely on estimating whether one or more compressions have been ap-
plied on the video signals [8, 3]. Other strategies aims at identifying
the acquisition device by detecting the type of adopted codec [9] or
the specific algorithm that was used [10, 11]. Detecting double com-
pression is also useful whenever frame cuts need to be detected since
the statistics of bit rate is altered after recompression [12]. Other
solutions rely on the statistics of residual signal that according to
recompression changes introducing different artifacts on the recon-
structed sequence [13]. Alternatively, other algorithms search for
traces left by specific editing operations [2].

Forensic audio strategies have been studied for a long time [14].
The vast majority of these solutions aims at enhancing parts of au-
dio signals, detecting sound sources, and identifying scene or places
from audio tracks that sound highly corrupted by noise [15]. More
recently, forensic strategies have been concerned with the detec-
tion of recompression [4] and fake quality [16]. Other approaches
in the literature aims to infer pieces of information related to the
size/geometry of the room in which the audio track was recorded.
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Fig. 1. Block diagram of the proposed scheme

To this purpose, in [17] a set of audio features is used to characterize
specific room types.

However, at the best of authors’ knowledge, forensic detectors
fusing audio and video information have not been proposed yet.
Since multimodal fusion has proven to be a promising methodology
[5], in this paper we extend an approach that estimates the character-
istics of the environments from reverberation time [18] combining
it with the estimate obtained from video information. In doing so,
we are able to both have a more accurate estimation of the record-
ing environment and exploit the possible mismatching of audio and
visual data to detect the presence of forgeries (i.e., audio track not
compatible with the video one).

3. THE PROPOSED APPROACH

The proposed detectors can be divided into two separate analysis
chains whose results are combined in the end in order to validate the
analyzed video. These two chains are reported in Fig. 1 and process
the audio and the video component of the investigated multimedia
file separately.

As for the video processing branch, the first unit dump a sub-
set of frames from the video sequence and performs a first clas-
sification on them. More precisely, the detector initially discrimi-
nates whether the recorded scene has been acquired indoor or out-
door. Then, in case camera is moving around the scene, the ini-
tial indoor/outdoor estimate is refined by computing the geometry
of the scene via a Structure from Motion (SfM) algorithm applied
on subsampled frames. The generated 3D point cloud model is then
rescaled according to some known distances that are present in the
scene. After this operation, it is possible to estimate the volume of
the scene.

Similarly to the video processing chain, the first unit of the audio
analysis discriminates whether the scene has been recorded indoor
or outdoor. In case the recording environment is classified indoor,
it is possible to check whether the signal contains vocalized parts or
not. Vocalized parts allow a precise computation of the reverberation
time RT60, which permits estimating the volume of the room given
an approximated absorption coefficient for the room surface.

Final results are then compared in order to verify that all the
different estimates are compliant. In the following we will describe
the two analysis chains in detail.

3.1. Environment estimation from video sequence

The frames of the acquired video sequence are sampled in order to
reduce the amount of processed data and to avoid analyzing infor-
mation that is too redundant. The latter requirement proves to be

Frame 29 Frame 60

Fig. 2. Frames from dataset F3.

Fig. 3. 3D point cloud model computed from frames of dataset F3.

crucial for the SfM geometry estimation unit that needs to process
different views of the scene. Assuming that camera is moving, ad-
jacent frames along the time axis could present a reduced amount
of innovation, and therefore, they would not improve the geometry
estimation. From these premises, we reduce the frame rate of the
sequence of 1/10 in order to keep only those frames with significant
motion (see Fig. 2).

It is possible to split the video analysis into three classification
units. The first units classify whether the signal has been acquired
indoor or outdoor. The second unit computes a 3D point cloud model
of the scene whenever the motion of the camera allows it. The third
unit map the 3D model to a volume estimate. Further details are
reported in the following subsections.

3.1.1. Indoor/outdoor classification

At the beginning of video analysis, the detector needs to decide
whether the scene was recorded indoor or outdoor. This analysis
permits inferring a minimum level of information about the acqui-
sition environment that could be useful whenever the following ge-
ometry estimation fails (i.e., whenever camera is too static or few
correspondences can be found between frames). The classification
is performed following the strategy reported in [19], i.e., computing
a color histogram for the processed frames and classifying it via a
Support Vector Machine (SVM) detector.

The input frames are converted into the HSV color space. The
H component is quantized into 8 levels, while the S component is
quantized into 4 levels. This defines 8 x 4 = 32 possible color
configurations for each sample in the image. A 32-bins histogram
of color configurations is computed and then processed by a binary
SVM classifier with Gaussian kernel that has been trained following
a RANSAC procedure on a training set of images. The training set
of images is a subset of the COREL image database [20].

3.1.2. Geometry estimation via Structure-from-Motion

For a more detailed estimation of the recording environment, the
proposed detector resorts to a Structure-from-Motion (SfM) 3D es-
timation of the scene [21]. More precisely, whenever the camera is
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panning around the scene, the different frames can be considered as
different views that permit estimating the 3D location of the different
objects. To this purposed we adopted the implementation VisualSfM
(available at [22]). The output data is a cloud of sparse 3D points
that need to be interpolated in order to have a sufficiently-dense set
of 3D elements (see Fig. 3). In this set, we need to find some ele-
ments related to known quantities in order to scale up the resulting
3D model to the its real dimensions (see the following subsection).
As a consequence, data are resampled using the CMVS algorithm
[23] available at [24].

3.1.3. Computing the final volume

In the end, data need to be rescaled to the real size. During the
estimation process, the SfM algorithm recomputes the focals of the
cameras since in the video file this information may be lost. The
estimated values may differ from the real one, and as a consequence,
the dimensions of objects reprojected in the 3D will result rescaled.
To avoid this we identify in the scene some known quantities like
the average height of people, the average width of shoulders, the
distance between the eyes in a face, and the height of doors.

After the rescaling, the volume of the space is computed by eval-
uating the maximum and the minimum values of geometrical compo-
nents for 3D points. From these parameters, it is possible to estimate
the box volume that enclose the scene.

3.2. Environment estimation from audio files

In parallel with environmental estimation from video frames, the
detector runs an environment detection analyzing the reverberation
characteristics of the audio signal. At first, a first discrimination be-
tween outdoor and indoor environment is operated. Then, in case the
signal has been acquired indoor, a rough estimation of the volume is
performed.

3.2.1. Estimation of the reverberation time

An emitted sound diffusing in room presents short or long tails that
gradually smooth into silence. These refers to the reflections of the
signal on the walls that define the environment and on the objects
present in the room.

Traditionally, the late decay envelope has been modeled as an
exponential with a single time-constant referred to as decay rate. A
common way to characterize the decay rate is to express it as rever-
beration time, named g9 or RT60. The RT60 time measures the time
taken for the sound level to drop 60 dB below the level at sound ces-
sation. A frequently-adopted method to estimate RT60 in an exper-
imental set up is the Integrated Impulse Response Method proposed
by Schroeder where the recorded sound is integrated starting from
different time instants.

Attenuation time is usually computed considering known sound
sources (impulsive, Gaussian or spoken). Some blind approaches
have been proposed in literature (like that by Loellman et al. [25]).
Moreover, the adopted reflection model implies that the environment
is closed (box model). As a matter of fact, whenever the signal is
generic and could have been recorded in an outdoor environment the
estimation strategy needs to be modified as follows.

3.2.2. Indoor/outdoor classification via reverberation time values

Applying the estimation strategy suggested by Schroeder to a
generic signal does not lead to reliable RT60 since it is not known
whether the starting hypothesis are verified. Computing Schroeder

Table 1. Video detector performance

o Real Real Est. Est.

cquisitiony ., o (m?) | Enw. size (m®) | Enw.
C0 32.40 indoor 30.36 indoor
FO 39.15 indoor 38.48 indoor
F4 29.70 indoor 22.53 indoor
F7 27.00 indoor 16.91 indoor
C2 56.70 indoor 44.87 indoor
F3 71.55 indoor 45.12 indoor
F5 54.00 indoor 79.91 indoor
F6 54.00 indoor 33.06 indoor
F9 54.00 indoor 39.31 indoor
C4 129.60 indoor 71.97 indoor
. indoor . indoor
ODI — outdoor] 1078.22 Toutdoor
OD2 — outdoor| 2727.10 [outdoor
OD8 — outdoor| 3702.97 [outdoor

RT60 measure on signals acquired outdoor via the routines in the
PSYSOUND library, it is possible to notice that the estimated values
varies much more during time with respect to acquisitions performed
indoor. From these premises, it is possible to compute the histogram
Hi(t) of the RT60 values for the current audio track under analysis
and evaluate

Teo = {RT60 s.t. Heo(RT60) > p}. &

The cardinality Nrreéo = |Teo0| permits introducing a measure-
ment of the dispersion which distinguishes indoor acquired tracks
from the outdoor tracks. Figure 4 reports the values of Nrreo and
E[RT60] for different sequences. It is possible to notice that upper
right values characterize outdoor acquisitions. From these results,
it is possible to design an SVM classifier that given the feature ar-
ray [Nrreo, E[RT60]] decides whether the sequence was acquired
indoor or outdoor

3.2.3. Volume estimation

In case the audio track has been acquired indoor, the reverberation
conditions are more favorable to an accurate estimation of RT60.
Therefore, the RT60 value is refined via the approach in [25] and its
value can be related to the volume V' of the room via

0.161 -V

RT60 = ——
S . Aabs ’

(@)
where S is the overall surface, and A5 the absorption coefficient.
Experimental results show that, using average absorption coeffi-
cients, it is possible to estimate the volume of the room with a
certain accuracy for spoken signal. For generic signals, it is only
possible to discriminate between small rooms and medium-wide
rooms (as it will be shown in Section 4).

4. EXPERIMENTAL RESULTS

The proposed detector works by synergically merging clues from
audio and visual data. However, some clues might not be correctly
estimated in some cases. An example is the volumetric estimation
from video data when the camera is fixed. In this case, the detector
must work using only visual information about the indoor/outdoor
classification together with audio information. For this reason, we
decided to evaluate the accuracy of our detector on different test sets
that accommodate different working conditions.

The first test set consists of 23 video sequences recording a
known environment (both indoor and outdoor) where a controlled
audio signal is emitted. The controlled audio signal presents both
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Table 2. Audio performance

. Real Real [oreo o Est. Est.
nvironment . (mg) Env. (s) size (mg) Env.
CO0 32.40 indoor [ 0.70 154.44 indoor
FO 39.15 indoor | 0.50 37.67 indoor
F4 29.70 indoor | 0.39 16.75 indoor
F7 27.00 indoor | 0.30 7.92 indoor
C2 56.70 indoor [ 0.568 133.56 indoor
F3 71.55 indoor | 0.50 37.67 indoor
F5 54.00 indoor | 0.56 57.39 indoor
F6 54.00 indoor [ 0.49 35.09 indoor
F9 54.00 indoor | 0.41 19.53 indoor
C4 129.60 indoor | 0.62 87.24 indoor
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Fig. 4. Indoor/Outdoor detector using features from RT60 estimates.
Indoor acquisitions (star) are compared with outdoor acquisitions
(dots). Note that the value Ngrreo for indoor acquisitions is ran-
domly moved between values [0, 1] to make the graph understand-
able (real values 1).

vocalized and generic (musical) parts. In the environment the cam-
era is panning around the scene making possible to estimate the 3D
environment using SfM. Audio sequences usually lasts 40 s, while
around 100 video frames are used for the volume estimation. Ta-
ble 1 reports the estimated volume from the point cloud 3D model
on this set. Note that indoor/outdoor classification can be performed
by simply thresholding the estimated volume value. Moreover, even
though the 3D estimation is not always precise, it is possible to dis-
criminate a rough approximation of room size which can be small,
medium, or large (in the indoor scenario).

As it comes to the audio analysis, indoor/outdoor detector works
very well since it is possible to obtain an accuracy of 100 % as Fig. 4
shows. Table 2 reports additional details about the estimated volume
from RT60 values from indoor acquisition. It is possible to see that
the audio detection performs very well whenever the aim of the es-
timation is to detect a rough approximation of the size of the room.
Whenever RT60 is lower than 0.55 s, it is possible to infer that the
room is small-medium (with the only mistake of C0O). Volume es-
timation proves to be much more inaccurate than the video case.
Anyway, remember that absorption coefficients is not known and
therefore, a precise estimation of the volume is not possible.

The second test set involves generic videos downloaded from
Youtube, representing both outdoor and indoor video scenes, whose
audio track is authentic (i.e., recorded outdoor or indoor according
to the scene). In this case, the signal is quite generic and completely
uncontrolled by us. Moreover, only in some cases the camera is
moving so that StM algorithm obtains a meaningful 3D estimate of

Table 3. Fake detector performance

Acquisiti Real | Video | Audio | Fake or

cquisition Env. Est. Est. altered
ufo_ haiti outdoor| outdoor | indoor yes
catedral_in indoor | indoor | indoor no
catedral out |outdoor outdoor | outdoor no
catedral_vidovic |indoor | indoor | indoor no
catedral_asuncionjoutdoor| outdoor | indoor yes
kungfu bear outdoor| outdoor | outdoor no
micromax outdoor| outdoor | outdoor no
nokia outdoor| outdoor | outdoor no
catedral bianco |indoor| indoor | indoor no

Table 4. Estimated RT60 values (indoor setup)
Env. |Video Audio est.

est. |orig.| M N T
rooml [0.135/0.1290.127H0.126F0.126H
room2 [0.1320.1270.127|0.125F0.125H
room3 [0.127/0.123 0.124 [0.121F0.121H
room4 [0.1290.1250.122H0.121F0.121H
room5 [0.1330.1280.126H0.125F0.125H

the scene. As a matter of fact, in most videos the only classification
that is possible is to evaluate whether the signal has been acquired in-
door or outdoor. Anyway, the proposed SVM based classifier works
very well permitting a correct detection in 90 % of the cases. The
audio indoor/outdoor classifier works also in this case leading to an
accuracy around 95 %. Results are reported in Table 3.

In the end, we considered the possibility of detecting fakes, i.e.,
sequences where the original audio track acquired on the spot has
been replaced with another track that has not been acquired there. It
is possible to notice that the designed approach is able to distinguish
those videos that have been altered among the set of authentic ones.
To this purpose we generated a set of indoor video sequences where
the audio tracks have been tampered by adding an environmental
noise track. Noise tracks involve background music (M), birds and
natural sounds (N), and road traffic (T). Videos are available online
and their URLSs are reported on [26].

In this case, since videos are indoor and allow volume esti-
mation, in case both audio and video are classified as indoor, it is
possible to estimate the conformity of reverberation estimated from
the audio track and those approximated from the video signal. Ta-
ble 4 reports the RT60 values estimated from geometry and from
the different audio tracks. It is possible to see that fakes are easily
detected verifying if the difference between RT60 values estimated
from video and audio is greater than 4 %. Letter F denote sequences
that have been detected as fakes. Note that fake detection accuracy
is around 90 %.

5. CONCLUSIONS

The paper presented a multimodal approach to detect tampered audio
from video sequences. More precisely, the 3D acquisition environ-
ment is estimated in parallel from the video data and from the audio
data. Experimental results show that the approach is able to estimate
whether a sequence has been recorder indoor or outdoor. This ca-
pability is also verified on generic sequences downloaded from the
web. Future work will be devoted to improve the detector with a fine
localization of the tampered part.
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