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ABSTRACT
We present a novel method of learning multiple disjunct con-
cepts with diverse density using an incremental approach. We
demonstrate that by maximizing the diverse density over in-
dividual target concept points and minimizing the probabil-
ity of their intersection, concepts can be learned incremen-
tally. This method reduces the complexity of the algorithm
from factorial, with respect to the number of targets, to ex-
ponential order. We demonstrate that this greedy approach
successfully learns disjunctive target concepts with competi-
tive classification accuracy on a benchmark multiple instance
learning dataset in comparison to other common diverse den-
sity approaches. We also introduce a novel application of the
multiple instance learning framework to an emotion recogni-
tion task using prosodic and spectral speech features.

1. INTRODUCTION
Multiple instance learning (MIL) has become popular for
learning problems using corpora with summatively, and often
ambiguously, labeled data. In the MIL framework, datasets
consist of labeled prototypes, called bags, which are com-
prised of several example feature vectors rather than every
feature vector having an explicit label as in conventional su-
pervised learning problems. The example feature vectors,
called instances, may vary in the extent to which they con-
tribute to the label given to the bag. Correctly identifying
representative examples in a bag should ultimately lead to
higher classification accuracy and may lend itself to inter-
pretive insights about the problem domain based on these
representative instances. The regions in feature space near
representative instances are considered concepts and the goal
of many MIL algorithms is to identify these concepts and
distinguish bags of different labels by the proximity of their
instances to these concepts.

The notion of diverse density (DD) was introduced by
Maron and Lozano-Pérez in [1] to address this problem. The
main intuition behind diverse density is that target concepts
will lie in areas where many bags of the same label intersect
or are very close. One benefit of this model is that points in
feature space that are close to points from negatively labeled
bags are given lower diverse density. This allows bag labels

to be taken into account when searching for target concepts
which leads to learned concepts with greater discriminability.
The diverse density is one of the most popular formulations of
MIL. It has been the subject of numerous advances including
an expectation maximization formulation [2]. Additionally, it
has been formulated as an instance selection task that is sub-
sequently paired with a support vector machine classifier [3].
Chen et al. further improved this work by embedding the in-
stance selection task in the optimization of the support vector
machine [4].

In the original algorithm, the diverse density is calculated
over the instance feature space and a threshold is determined
to classify unseen bags according to where their instances lie
with respect to the learned threshold [5]. Fould and Frank
presented an algorithm for speeding up the diverse density
learning process by choosing the target concept to be the sin-
gle instance with highest diverse density from all the bags
[6]. Maron (and Ratan) described how the diverse density al-
gorithm could be extended to a search for multiple disjunctive
target concepts in [5] and [7]. Maron also discussed consid-
erations that must be made when searching for learning mul-
tiple concepts. One important consideration is how to choose
d, the number of disjuncts to be learned. It was indicated
that adding more disjuncts will always increase the diverse
density but will lead to less generalization of the model when
classifying unseen bags. How to address this issue remains an
open problem. Because of the factorial complexity of learn-
ing multiple disjunct target concepts, experiments have not
been conducted to explore learning more than two concepts.

This paper introduces an efficient method for learning
multiple disjunct concepts with a variant of the diverse den-
sity algorithm that reduces the complexity of maximizing the
diverse density over multiple disjuncts from factorial with
the number of concepts to exponential order. We introduce a
new estimator for the diverse density, called the Incremental
Diverse Density (eq. 7), which allows for instances to be
selected in a greedy manner. We empirically demonstrate
the usefulness of the method with competitive classification
accuracy on a canonical MIL dataset. Subsequently, we
demonstrate a novel application of multiple instance learning
to an emotion recognition task using speech features.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4591



2. METHODOLOGY

2.1. Diverse Density Learning of Multiple Concepts
The diverse density algorithm was originally presented for
learning single point concepts in ambiguously labeled data.
Subsequently, it was extended to learn multiple concepts by
treating the single points as a disjunctitve set. The diverse
density of a set of disjunct points in the observed instance
space is defined as:

DD(D) ≡ P (D|B), (1)

where, B = {B+
1 , ..., B

+
l , B

−
1 , ..., B

−
m} is the set of n la-

beled bags (n = l + m) and D = {c1 ∨ c2 ∨ · · · ∨ cd} is a
disjunction of d concepts. Then by invoking Bayes Rule the
set of disjunct concepts with maximum diverse density can be
determined with maximum likelihood estimation,

D∗ = argmax
D∈I(d)

[P (D|B)] = argmax
D∈I(d)

[
P (B|D)P (D)

P (B)

]
, (2)

where I(d) is the set of all d-element subsets of disjunct in-
stances in I, the set of the L observed instances from the l
positive bags in B. Then assuming a uniform prior, P (D),
conditional independence of observed bags given the target
concepts, and invoking Bayes Rule once more, this becomes,

D∗ =argmax
D∈I(d)

[
l∏

i=1

P (B+
i |D)

m∏
i′=1

P (B−i′ |D)

]

=argmax
D∈I(d)

[
l∏

i=1

P (D|B+
i )

m∏
i′=1

P (D|B−i′ )

]
.

(3)

In [5], Maron compares common density estimators (e.g.,
most-likely-cause and noisy-or) to estimate P (D|Bi). For
this work we use the most-likely-cause estimator because it is
the most consistent with the assumption that bags can be rep-
resented by their single most representative instance. Thus,
the conditional probability becomes,

P (D|Bi) ∝ 1−
∣∣∣∣1 + yi

2
− max

1≤j≤Ni

[P (Bij ∈ D)]
∣∣∣∣ , (4)

where, yi ∈ {−1, 1} is the label of bag i, Ni is the number of
instances in bag i, and P (Bij ∈ D) is the probability that the
jth instance from the ith bag is in the set of hypothesized con-
cepts D. Note this value is not a proper probability because
it is left unnormalized (hence, the ∝ relation). By taking the
hypothesized concept which is closest to the instanceBij , it is
assumed that each instance is generated by one concept. Sub-
sequently, the probability that Bij is in any one of the target
concepts is estimated by,

P (Bij ∈ D) ∝ max
1≤k≤d

(
e−||Bij−ck||2

)
. (5)

We use the max operator as an estimator for the logical ‘or’
to be consistent with the previous literature.

2.2. Incremental Learning of Multiple Concepts
In order to maximize the diverse density over d disjunct in-
stances with an exhaustive search it is necessary to search

(
L
d

)
possible combinations of instances in I(d). By making the
assumption that each disjunct concept can be learned incre-
mentally (in a greedy manner), target concepts can be learned
one at a time reducing the search to L(2d− 1) iterations. The
intuition behind this assumption is that when finding the max-
imum diverse density of the disjunction of the globally opti-
mum point (the instance with highest diverse density) at the
first step with all other points will yield a disjunct concept
of high diverse density. We begin the incremental maximiza-
tion over single instances from positive bags. Clearly this re-
duces exactly to the single concept (point-wise) diverse den-
sity learning whenD consists of a single target concept. Once
a single concept is discovered, it is fixed and paired with all
other (L−1) instances and two disjunct concepts are learned.
This is then repeated until d total concepts are learned.

The existing algorithm for maximizing the diverse den-
sity over disjunct concepts is not sufficient for incremental
learning because the strongest hypothesized point is often in
an area of much higher diverse density and it will overwhelm
other areas in the space that would have been considered in
a global optimization compared to an incremental one. Ulti-
mately, attempting to incrementally learn concepts in this way
will lead to redundant concepts. Since it is of interest to learn
a diverse set of strong concepts, it is necessary to minimize
the similarity (or probability of intersection) of the hypoth-
esized concepts. Because of the estimators used to approxi-
mate the diverse density (see equations 4 and 5), the general
addition theorem does not hold. However by making the ap-
proximation,

DD(c1 ∨ c2) ≈ DD(c1) +DD(c2)−DD(c1 ∧ c2), (6)

we have the desired result of maximizing the diverse density
over the concepts while minimizing their intersection. We
use this approximation to define a new quantity for incremen-
tal learning of the diverse density of multiple concepts which
we will refer to as the Incremental Diverse Density (IDD).
More explicitly, we define the incremental diverse density of
d disjunct concepts as,

IDD(D) ≡
d∑

i=1

DD(ci)−
∑

i,j:1≤i<j≤d

DD(ci ∧ cj)

+
∑

i,j,k:1≤i<j<k≤d

DD(ci ∧ cj ∧ ck)− · · ·

+ (−1)d−1DD(c1 ∧ · · · ∧ cd).

(7)

Or, equivalently (and more compactly),

IDD(D) ≡
∑
∀S∈2C

(−1)|S|−1DD(S) (8)

where C is the conjunction of hypothesized concepts, C =
{c1 ∧ c2 ∧ · · · ∧ cd}.

4592



While the diverse density over disjunct instances has been
previously defined, there is no existing definition of the di-
verse density of conjunctive instances. Thus, we define the
probability that a given instance is in all the target concepts
as:

P (Bij ∈ C) ∝ min
1≤k≤d

(
e−||Bij−ck||2

)
, (9)

This definition uses the min function as an estimator for a
logical ‘and’ to be consistent with the estimator for logical
‘or’ defined in equation 5. The total number of disjuncts d, is a
parameter that can be tuned with cross-validation or set by the
user with prior knowledge of the number of target concepts to
be learned in a particular dataset.

2.3. Nearest Concept Features
In order to evaluate the efficacy of IDD for accurately classify
bags a simple nearest concept classification rule is used. First,
concepts are learned from positive bags. Once the positive
concepts are learned, each bag is classified according to the
minimum distance of any instance in that bag to the concepts,
i.e., bags with an instance very close to a positive concept are
labeled positive. This results in a single dimensional feature
that is used to train a simple linear SVM classifier [8] to de-
termine the decision threshold. Thus, each bag is represented
by the feature:

φ(Bi) = min
1≤k≤d

(
min

1≤j≤Ni

||Bij − ck||2
)
. (10)

This can be easily extended to a nearest concept task in which
the distances from a particular concept are taken from all
points in the bag and then bags would be classified accord-
ing to either a majority voting or minimum total distance rule
or the multi-dimensional feature could be used to train a sub-
sequent classifier.

2.4. Point-and-scaling Concepts
Thus far, we have only discussed concepts in terms of their
points in feature space. One of the main strengths of the
diverse density is that a concept point and the correspond-
ing feature scaling can be learned simultaneously to learn
concepts that emphasize important features and de-emphasize
less important features. This adds the ability to learn better
concepts but at the cost of increased complexity. Point-and-
scaling concepts are learned by maximizing the diverse den-
sity with respect to both the concept point c and correspond-
ing scaling s. Thus the probability that a particular instance
Bij resulted from a point-and-scaling concept is estimated by,

P (Bij ∈ {c, s}) = exp

(
−

r∑
q=1

sq(Bijq − cq)2
)
, (11)

where r is the dimensionality of the feature space. This max-
imization is done using gradient based optimization. For im-
plementing this task we use the dpfmin routine [9]. In par-
ticular we use an adaptation from code written by Chen et
al. [3]. For incremental learning there are two possible ap-
proaches. The first is to maximize the diverse density over

single point-and-scaling instances from positive bags and to
continue using those scaling parameters when choosing sub-
sequent disjunct concepts. Another solution is to re-learn the
scaling parameters of each concept point as additional dis-
juncts are learned. In [6] it is demonstrated that scaling once,
iteratively, or after concepts points were determined did not
have a significant impact on classification accuracy in the sin-
gle concept case. In this paper, we learn feature scalings for
the single target points and use those same scalings when
maximizing the incremental diverse density with respect to
disjunct concepts. This scaling is subsequently used to com-
pute the nearest concept features. Thus, the bag features be-
come:

φ(Bi) = min
1≤k≤d

(
min

1≤j≤Ni

[
r∑

q=1

skq (Bijq − ckq )
2

])
. (12)

3. EXPERIMENTAL RESULTS
3.1. MUSK Experiments
The MUSK 1 and MUSK 2 data sets are benchmark tests used
for evaluating MIL algorithms. Both corpora are available on-
line in the University of California, Irvine Machine Learning
Repository [10]. The data are comprised of molecules which
have been labeled as either ‘musk’ or ‘non-musk’ based on
whether they smell musky. Each molecule has many feature
vectors to describe different shapes that molecules can take.
For this reason, molecules are considered bags and the feature
vectors describing them are considered instances. A molecule
is considered a ‘musk’ if any of its feature vector descriptions
are a musk and a ‘non-musk’ only if all of its descriptions are
not musks. Hence, we attempt to learn the musk concept(s) in
the data to perform classification.

Table 1. Classification accuracies (%) on the MUSK data
sets. Average of 10 runs of 10-fold cross validation results are
shown (with 95% confidence intervals in brackets for IDD).

ALGORITHM MUSK 1 MUSK 2
IDD 88.04 [86.88, 89.20] 86.37 [84.95, 87.79]
DD [1] 88.9 82.5
EM-DD [11] 84.8 84.9
QUICKDD [6] 86.4 87.2
DD-SVM [3] 85.8 91.3
MILES [4] 86.3 87.7

We report classification accuracies1 for the MUSK data in
Table 1. To choose the number of target concepts for IDD,
we perform 2-fold cross validation on the training set, vary-
ing the number of disjuncts from 1 to 5. The average accu-
racy is on par with previously reported results on the MUSK
1 data. In fact, IDD gave the highest average accuracy for
diverse density or multiple instance variants on the MUSK 1

1We report results for the QuickDD Scaling Only method because it is
the most directly comparable to the scaling method used here [6]. The results
for the diverse density (DD) were not conducted for 10 runs of 10-fold cross
validation so they are reported here for reference not direct comparison [1].
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Table 2. Single versus multiple concept IDD unweighted and weighted classification accuracy, precision, recall, and F1-
measure (%) for the sadness detection task.

ALGORITHM d U.W. ACCURACY W. ACCURACY PRECISION RECALL F1-MEASURE

IDD 1 82.31 81.79 78.69 78.69 78.69
IDD 1-5 83.67 84.72 77.94 86.89 82.17

dataset (with respect to 10 runs of 10 fold cross validation).
The lower bound of the 95% confidence interval for IDD is
above the average accuracy of all other methods.

The IDD algorithm was also competitive on the MUSK
2 data. Only the average accuracy for DD-SVM was above
the higher bound of the 95% confidence interval of IDD. It
is important to note that IDD, in contrast to DD-SVM, only
estimates the diverse density for the positive class, there is no
need to find the optimum parameters for a radial basis func-
tion kernel SVM, and final classification is performed with a
single dimensional feature vector.

3.2. Sadness Detection in Spoken Dialogs
Label ambiguity is a major challenge in human emotional
and affective state recognition [12]. Moreover, such labels
are often provided at a summative level such as over an en-
tire spoken dialog. This makes the multiple instance learn-
ing paradigm an attractive approach as it was developed in
order to address label ambiguity. The IEMOCAP database
consists of conversational dialogs in which pairs of actors
express a number of target emotions [13], [14]. There are
ten speakers in the corpus who participated in both scripted
and improvisational dialogs. There were multiple sessions
recorded for each pair (scripted and improvisational each ap-
proximately five minutes long). In each session they were
asked to act emotions from the target set of happiness, anger,
sadness, frustration and neutral. In total there are 147 sessions
(bags) consisting of 4947 utterance turns (instances) which
were each subsequently given an emotion label.

We adapt this emotion recognition task to the multiple
instance learning framework by choosing an emotion that is
both well represented in the data and seemed that it would be
well modeled by a salient instance representation. We chose
sadness for this task as it is represented in a large proportion
of the sessions (42.11%) and it can be emoted in ambiguous
ways (e.g., apathy versus grief). We label any session with
at least one sad utterance (labeled as sad) as a ‘sad’ session,
reserving the label ‘not sad’ for sessions without any sad ut-
terances. This is consistent with the original MIL formulation
in which it only takes one positive instance to label a bag as
positive, while negative bags only contain negative instances.
This results in a challenging classification task because many
of the sessions contain a variety of different emotions (e.g.,
some sessions contain both sad and happy utterances) that are
non prototypically expressed or represent blended emotions.

We model these sessions by extracting speech prosodic
and spectral features from each utterance. Pitch, intensity and

12 Mel Filter Bank (MFB) coefficients were extracted over
25 ms frames with a 10 ms shift. These signal level feature
dimensions were z-normalized with the mean and standard
deviation of the training data by fold. Eleven functionals of
these frame-level acoustic features were taken across each
speaker utterance to produce instance feature representations.
The computed functionals were mean, variance, median,
inter-quartile range, 1st percentile, 25th percentile, 75th per-
centile, 99th percentile, range, skewness, and kurtosis. This
resulted in a 154 dimensional feature vector representation of
each instance (14 features by 11 functionals). The classifi-
cation experiments were conducted using leave-one-speaker-
out cross validation to ensure speaker independent modeling.
With ten speakers this yielded a 10-fold cross validation. As
Maron mentioned in [5] there is an inherent tradeoff between
the number of concepts estimated and generalization of the
model. For this task we use 2-fold cross-validation on the
training data to determine the optimum number of concepts.

As shown in table 2, using the IDD algorithm to estimate
multiple concepts improved the unweighted and weighted ac-
curacy, recall, and F1-measure for the sadness detection task.
Only precision decreased by estimating multiple concepts.
Recall had the greatest increase indicating that multiple con-
cepts helped retrieve sessions with sad instances that were
missed by a single concept. However, this came at the cost
of increasing false positives. This result is intuitive because
by allowing more regions to be considered salient to the clas-
sification task, it is more likely that a similar instance may
appear in a negative bag.

4. CONCLUSION AND FUTURE WORK
This paper presented a new variant of the diverse density for
incrementally estimating multiple disjunct concepts in multi-
ple instance data. This method allows for more complex con-
cepts to be learned efficiently. More complex concepts lead
to better modeling of some multiple instance data as verified
by competitive accuracy on benchmark data. In the future, we
will investigate the problem of estimating the ideal number of
concepts to be learned during training. In this work, we did
this estimation by performing cross validation on the training
data. Unfortunately, this is a very computationally costly pro-
cedure. We plan to investigate more efficient ways of doing
this estimation such as using clustering or information mea-
sures. In addition to improving this work, we are interested in
applying the multiple instance framework to more classifica-
tion and concept learning tasks such as utterance level analy-
sis of conversational dialogs.
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