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ABSTRACT
To assess the risk of extreme events such as hurricanes and
floods, it is crucial to develop accurate extreme-value statisti-
cal models. Extreme events often display heterogeneity, vary-
ing continuously with a number of covariates. Previous stud-
ies have suggested that models considering covariate effects
lead to reliable estimates of extreme value distributions. In
this paper, we develop a novel model to incorporate the ef-
fects of multiple covariates. Specifically, we analyze as an
example the extreme sea states in the Gulf of Mexico, where
the distribution of extreme wave heights changes systemati-
cally with location and wind direction. The block maxima at
each location and sector of wind direction are assumed to fol-
low the Generalized Extreme Value (GEV) distribution. The
GEV parameters are coupled across the spatio-directional do-
main through a graphical model, particularly, a multidimen-
sional thin-membrane model. Efficient learning and inference
algorithms are then developed based on the special character-
istics of the thin-membrane model. Numerical results for both
synthetic and real data indicate that the proposed model can
accurately describe marginal behavior of extreme events.

Index Terms— extreme events modeling, graphical
model, covariates, Laplacian matrix, Kronecker product

1. INTRODUCTION
Extreme events, such as heat waves, cold snaps, tropical cy-
clones, hurricanes, heavy precipitation and floods, droughts
and wild fires, have possibly tremendous impact on people’s
life and properties. Furthermore, both observational data and
computer climate models suggest that the occurrence and
sizes of such catastrophes will increase in the future [1]. It
is therefore imperative to model such events, assess the risk,
and further take precaution measurements.

Extreme-value theory governs the statistical behavior of
extremes, such as block maxima (e.g., monthly or annually)
and peaks over a high enough threshold [2]. More specifi-
cally, the theory provides closed-form distribution functions
for extreme values. The main challenge in fitting such distri-
butions is the lack of data, as extreme events are by definition
very rare. The problem may be addressed by assuming that
all the collected data (e.g., extreme wave heights at different
measuring sites [3]) follow the same distribution, resulting in
sufficiently large sample size. However, there usually exists
clear heterogeneity in the extreme value data. Extreme tem-
perature, for instance, is greatly influenced by the altitude of

the measuring site. The latter is regarded as a covariate. Ac-
commodating the heterogeneity in the model is essential since
the estimated models will be unreliable otherwise [4]. A fruit-
ful approach is to assume that the parameters of the extreme
value distributions vary smoothly with covariates; such prior
knowledge can significantly help to improve the fitting.

Extreme-values models have been developed with sin-
gle [5, 6, 7, 8, 9] and multiple covariates [10, 11]. The first
group usually treats the parameters of the marginal distri-
butions as a function of the covariate and apply regression
methods [6, 7, 8] or Bayesian fitting [9] to learn the model.
However, such procedures are computationally complex and
can be prohibitive for large-scale systems. On the other hand,
few attempts have been made to model multiple covariates.
A standard method is to predefine the distribution parameters
as a function of all covariates [10]. Unfortunately, only linear
or log-linear models have been considered so far, which are
rather limited. As an alternative, Jonathan et al. [11] proposed
to process two covariates individually. However, capturing
the two covariates independently fails to consider the possible
correlation between them.

The aforementioned shortcomings spark our interest in
exploiting graphical models to incorporate multiple covari-
ates in extreme value models. The interdependencies between
extreme values with different covariates are often highly
structured, and thus, can be leveraged by the graphical model
framework to yield efficient algorithms [12, 13, 14, 15]. As
an example, we model the storm-wise maxima of significant
wave heights in the Gulf of Mexico (see Fig. 3), where the
covariates are longitude, latitude, and wind direction. The
extreme events are assumed to follow Generalized Extreme
Value (GEV) distributions [2]. The parameters of those GEV
distributions are assumed to depend smoothly on the covari-
ates. To facilitate the use of graphical models, we discretize
the continuous covariates within a finite range. In the exam-
ple of extreme-wave heights in the Gulf of Mexico, space is
discretized as a finite homogeneous two-dimensional lattice,
and the wind direction is discretized in a finite number of
equal-sized sectors. More generally, the GEV distributed
variables (and hence also the GEV parameters) are defined
on a finite number of points indexed by the (discretized) co-
variates. We characterize the dependence between the GEV
parameters through a graphical model prior, in particular,
a multidimensional thin-membrane model where edges are
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only present between pairs of neighboring points (see Fig. 1).
We demonstrate that the multidimensional model can be
constructed flexibly from one-dimensional thin-membrane
models for each covariate. The proposed model can therefore
easily be extended to an arbitrary number of covariates. Ef-
ficient learning and inference algorithms are proposed based
on the special pattern of the eigenvalues and eigenvectors of
the one-dimensional thin-membrane models. Our numerical
results suggest that the proposed model indeed accurately
captures the effect of covariates on the statistics of extreme
events. Moreover, the proposed model can flexibly accommo-
date a large variety of (smooth) dependencies on covariates,
as the smoothness parameters of the thin-membrane model
are inferred from data.

The paper is organized as follows. We briefly review thin-
membrane models in Section 2. We introduce our proposed
extreme-value graphical models with multiple covariates in
Section 3. Results for both synthetic and real data are pre-
sented in 4. Lastly, we offer concluding remarks in Section 5.

2. THIN-MEMBRANE MODELS
In this section, we first give a brief introduction to graph-
ical models, and then consider two specific cases of thin-
membrane models, which serve as building blocks in the pro-
posed extreme-value graphical model.

In an undirected graphical model, the probability distri-
bution is represented by an undirected graph G which con-
sists of nodes V and edges E . Each node i is associated with
a random variable Zi. An edge (i, j) is absent if the corre-
sponding two variables Zi and Zj are conditional indepen-
dent: P (Zi, Zj |ZV|i,j) = P (Zi|ZV|i,j)P (Zj |ZV|i,j), where
V|i, j denotes all the variables except Zi and Zj . In particu-
lar, for Gaussian distributed Z, the graph G is characterized
by the inverse covariance matrix (precision matrix) K, i.e.,
K(i, j) 6= 0 if and only if the edge (i, j) ∈ E [16].

The thin-membrane model is a Gaussian graphical model
that is commonly used as smoothness prior as it minimizes
the difference between values at neighboring nodes:
P (Z) ∝ exp{−α

∑
i∈V

∑
j∈N(i)

(Zi − Zj)2} ∝ exp{−αZTKpZ},

where Kp is a graph Laplacian matrix [17], and α is the
smoothness parameter which controls the smoothness across
the domain defined by the thin-membrane model. Since Kp

is a Laplacian matrix, the determinant of the precision ma-
trix K = αKp is 0. The thin-membrane model is a partially
informative normal prior, commonly used in spline smooth-
ing [18]. To make the distribution well-defined, the improper
density function is usually applied in practice [18]:

P (Z) ∝ |K|0.5+ exp{−ZTKZ}, (1)
where |K|+ denotes the product of nonzero eigenvalues of
K. We now turn our attention to the thin-membrane models
of the chain and the circular graph as shown in Fig. 1a and
Fig. 1b respectively. The former can well characterize the de-
pendence structure of nonperiodic covariates (e.g., longitude

and latitude), while the latter is suitable for periodic covari-
ates (e.g., direction and season). The corresponding Lapla-
cian matrices are denoted as KB and KC respectively. The
eigenvalues of KB and KC are λB k = 2− 2 cos(kπ/P ) and
λC k = 2 − 2 cos(2kπ/P ) respectively [19], where P is the
dimension of KB and KC . Moreover, let VB and VC be the
eigenvector matrix of KB and KC and x be a P × 1 column
vector, then VBx and VCx amount to discrete cosine trans-
form and discrete Fourier transform respectively of x [19].
The nicely structured eigendecomposition motivates us to use
thin-membrane models in the proposed model.

3. EXTREME-VALUE MODELS WITH MULTIPLE
COVARIATES

In this section, we introduce our extreme-value graphical
model with multiple covariates. We will explain it by the ex-
ample of extreme wave heights in the Gulf of Mexico (GoM),
specifically, (monthly or annual) block maxima of the wave
heights. Inspired by extreme-value theory, we assume that the
extreme values follow the Generalized Extreme Value (GEV)
distribution [2]. The GEV variables are assumed to depend
smoothly on several covariates. In our example of the GoM,
we assume that the extreme wave heights depend smoothly
on location and wind direction. For the sake of simplicity, the
covariates are discretized within a finite range; the location
is discretized as a finite two-dimensional grid (spanning the
GoM), and the wind direction is divided in equal-size sectors.
Each location is indexed by its longitude and latitude (i, j)
(i = 1, · · · , P , j = 1, · · · , Q), and each directional sector
by k (k = 1, · · · , D), where P × Q is the size of the two-
dimensional grid, and D is the number of directional sectors.
We have N samples x(n)ijk (block maxima; n = 1, · · · , N )
for each location (i, j) and direction k. The GEV parame-
ters, just like the GEV variables, are indexed by (i, j, k). We
couple the GEV parameters through thin-membrane models,
encoding that the GEV parameters depend smoothly on the
covariates. Consequently, the GEV parameters are similar
at nearby locations and for similar wind directions. In the
following, we provide more details on this construction.

3.1. Local estimates of GEV parameters
We assume that the block maxima x(n)ijk follow a Generalized
Extreme Value (GEV) distribution [2]:

F (xijk) = exp{−[1 +
γijk
σijk

(xijk − µijk)]
− 1
γijk }, (2)

with shape parameter γijk, scale parameter σijk, and lo-
cation parameter µijk. The probability-weighted moment
method [20] is employed here to infer the local estimates of
the GEV parameters (µ̂PWM

ijk ), (σ̂PWM
ijk ) and (γ̂PWM

ijk ).

3.2. Prior distribution
We assume that the shape parameter γijk, scale parameter
σijk, and location parameter µijk depend smoothly on the co-
variates, i.e., location (i, j) and wind direction k. For each of
the three parameter vectors µ = [µijk], γ = [γijk] and σ =
[σijk], we choose a three-dimensional (3D) thin-membrane
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model (see Fig. 1d) as prior. Since the thin-membrane mod-
els of the three GEV parameters µ, γ, and σ share the same
structure and inference methods, we present the three models
in a unified form. Let z denote the true GEV parameters, that
is, z is either µ, σ, or γ. We next illustrate how to construct the
3D thin-membrane model priors from the fundamental chain
and circular graphs. As a first step, we build a regular lat-
tice (see Fig. 1c) from chains. Since both the longitude and
the latitude of the measurements are nonperiodic, they can be
characterized by the chain graph as shown in Fig. 1a. LetKBx

and KBy denote the Laplacian matrices of the longitude and
the latitude respectively. We further assume that the smooth-
ness across the longitude and the latitude are the same, thus,
they can share one common smoothness parameter αz . The
resulting precision matrix of the regular lattice is given by:

KL = (αzKBx)⊕ (αzKBy ) = αz(KBx ⊕KBy ), (3)
where ⊕ denotes Kronecker sum, and the identity matrix I∗
has the same dimension asK∗. In the second step, we accom-
modate the effect of wind direction. We discretize the wind
direction intoD sectors and assume that the true GEV param-
eters are constant in each sector. The periodic directional de-
pendence comprises a circular graph (Fig. 1b), whose Lapla-
cian matrix is KC , and another smoothness parameter βz is
introduced to dictate the smoothness across directions. We
next integrate the lattice and the circle, and hence, the final
precision matrix corresponding to the 3D model (Fig. 1d) is:

Kprior = KL ⊕ (βzKC) = αzKs + βzKd. (4)
Interestingly, Ks = KBx ⊗ IBy ⊗ IC + IBx ⊗ KBy ⊗ IC
and Kd = IBx ⊗ IBy ⊗ KC corresponds to lattices and cir-
cles in the graph respectively, suggesting that the former only
characterizes the spatial dependence while the latter the di-
rectional dependence. Note that ⊗ denotes Kronecker prod-
uct. Based on the property of Kronecker sum, the eigen-
value matrix of Kprior is Λprior = αzΛs + βzΛd, where Λs =
ΛBx⊗IBy⊗IC+IBx⊗ΛBy⊗IC and Λd = IBx⊗IBy⊗ΛC ,
and the eigenvector matrix Vprior = VC⊗VBy ⊗VBx . Follow-
ing from (1), the density function of the 3D model equals:
P (z) ∝ |Kprior|0.5+ exp{−zTKpriorz} (5)

= |αzKs + βzKd|0.5+ exp{−ZT (αzKs + βzKd)Z}. (6)
Note that for an arbitrary number of covariates, the resulting
precision matrix can be generalized as:

Kprior = (αKa)⊕ (βKb)⊕ (γKc)⊕ · · · , (7)
where Ki(i ∈ {a, b, c, · · · }) ∈ {KB ,KC} are the Laplacian
matrices associated with the dependence structures of covari-
ate i, and α, β, and γ are corresponding smoothness parame-
ters. The eigenvalue and eigenvector matrix of Kprior are:

Λprior = (αΛa)⊕ (βΛb)⊕ (γΛc)⊕ · · · (8)
= αΛa ⊗ Ib ⊗ Ic ⊗ · · ·+ βIa ⊗ Λb ⊗ Ic ⊗ · · ·
+ γIa ⊗ Ib ⊗ Λc ⊗ · · ·+ · · · , (9)

= αΛ̃a + βΛ̃b + γΛ̃c + · · · , (10)
Vprior = · · · ⊗ Vc ⊗ Vb ⊗ Va. (11)

(a) (b) (c)

x

y



(d)

Fig. 1: Thin-membrane models: (a) chain graph; (b) circle
graph; (c) lattice; (d) spatio-directional model.

3.3. Posterior distribution and inference
Let y denote the local estimates of z, where y is either (µ̂PWM),
(σ̂PWM), or (γ̂PWM). We model the local estimates as y = z+b,
where b ∼ N(0, Rz) is zero-mean Gaussian random vector
(noise) with diagonal covariance matrix Rz . Rz can be esti-
mated by the parametric bootstrapping [21]. The conditional
distribution P (y|z) equals:

P (y|z) ∝ exp{−1

2
(y − z)TR−1z (y − z)}. (12)

Since we assume that the prior distribution of z is the 3D thin-
membrane model (6), the posterior distribution is given by:

P (z|y) ∝ |Kprior|0.5+ exp{−1

2
zT (Kprior +R−1z )z + zTR−1z y}.

Given the smoothness parameters αz and βz , the maxi-
mum a posteriori estimate of z is given by:

ẑ = argmaxP (z|y) = K−1postR
−1
z y, (13)

whereKpost = Kprior+R
−1
z . InvertingKprior is intractable due

to the complexity of orderO(M3). Alternatively, we propose
to an efficient algorithm. When the diagonal matrixRz can be
well approximated as a scaled identity matrix cIz , we have:
Kpost ≈ Kprior + cIz = V Tprior(αzΛs + βzΛd + cIz)Vprior.

As a result, z can be computed as
z = V Tprior(αzΛs + βzΛd + cIz)

−1VpriorR
−1
z y. (14)

Note that Vprior = VBx ⊗ VBy ⊗ VC , and thus VpriorR
−1
z y is

equivalent to reformulating the vector R−1z y into a P × Q ×
D matrix with the three dimensions representing longitude,
latitude, and direction respectively, and then performing the
fast cosine transform (FCT) in the first and second dimension
while the fast Fourier transform (FFT) in the third one. The
resulting computational complexity is O(M log(M)). Simi-
lar algorithm can be easily designed for the case of multiple
covariates. When cIz is not a good approximation to Rz , the
Richardson iteration [22] will be performed.

In the case αz and βz are unknown, we aim to infer them
from the local estimates y. However, since z is unknown, di-
rectly inferring αz and βz is impossible, and instead we apply
Expectation Maximization (EM):

(α̂(κ)
z , β̂z

(κ)
) = argmaxQ(αz, βz; α̂

(κ−1)
z , β̂(κ−1)

z ), (15)
where
Q(αz, βz; α̂

(κ−1)
z , β̂(κ−1)

z ) ∝ log |Kprior|+

− tr

(
Kprior

(
K

(κ−1)
post

)−1)
−
(
z(κ)

)T
Kpriorz

(κ),
(16)

and z(κ) is computed as in (13) with α̂
(κ−1)
z and β̂

(κ−1)
z

obtained from the previous iteration. Since Kpiror can be
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regarded as a generalized Laplacian matrix, |Kprior|+ =
M detS(Kprior), where S(Kprior) denotes the first M − 1
rows and columns of the M × M matrix Kprior [17]. By
setting the partial derivative of Q function w.r.t. αz and βz
to 0 and solving the equations, (15) can be simplified as

(α(κ)
z , β(κ)

z ) = argmax log detS(Kprior), (17)
s.t. c1αz + c2βz = M − 1, αz ≥ 0, βz ≥ 0,

and c1 and c2 are known constants. Note that log detS(Kprior)
= log det(αzS(Λs)+βzS(Λd)) =

∑
k log(αzλs k+βzλd k),

thus, (17) can be solved efficiently via bisection method [23].

4. NUMERICAL RESULTS
In this section, we test the proposed spatio-directional model
on both synthetic and real data against the locally fit model,
the spatial model (only considering the covariate of location),
and directional model (only considering direction).
4.1. Synthetic Data
Here we draw samples from GEV distributions with param-
eters depending on (two-dimensional) location and direction
(angle). Concretely, we select 100 sites arranged on a 10×10
homogeneous lattice and discretize the direction in 8 equal-
size sectors. We associate GEV parameters with each of the
100 sites and each of the 8 directions. In particular, the shape
parameter γ is chosen to be constant across the space whereas
varying smoothly across different directions. The scale pa-
rameter σ depends on the location according to a quadratic
polynomial function, and remains constant for all the direc-
tions. The location parameter µ changes smoothly with re-
gard to both location and direction. We then randomly gener-
ate 300 GEV distributed samples for each site and direction.
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Fig. 2: Estimates of GEV parameters for different directions.

Table 1: Quantitative comparison of different models.

Models Mean Square Error (MSE) BIC
γ σ µ

Locally fit model 0.0556 0.2160 0.0483 1.1753×106

Spatial model 0.0505 0.1471 0.7979 1.2189×106

Directional model 0.0503 0.7630 0.1683 1.1709×106

Spatio-directional model 0.0233 0.0607 0.0112 1.1649×106

Fig. 2 shows the results of GEV parameters estimated by
the aforementioned four models across directions. We can see
that the estimates resulting from the spatio-directional model
follows the ground truth very well. On the contrary, the local
estimates are quite noisy for the shape and scale parameters
due to the small number of extreme-value samples in each site
and wind direction. In addition, the directional model overes-
timates the location parameters and underestimates the scale

parameters, whereas the spatial model (see Fig.2 (right)) mis-
takenly ignores the directional variation of the shape and loca-
tion parameters, suggesting the necessity of capturing all the
significant covariates; otherwise, the estimates are inaccurate.
Table 1 summarizes the overall mean square error (MSE) for
each GEV parameter and the Bayesian Information Criteria
(BIC) of model fitting. Apparently, the proposed model yields
the smallest MSE while fitting the data the best after consid-
ering the penalty of the effective number of parameters. In-
terestingly, the smoothness parameters αγ and βσ converge to
infinity in the proposed spatio-directional model, exactly con-
sistent with the ground truth that γ and σ are constant w.r.t.
location and direction respectively.

4.2. Real Data
We now analyze the GOMOS (Gulf of Mexico Oceano-
graphic Study) data [24], which consists of 315 maximum
peak wave height values; each corresponds to a hurricane
event in the Gulf of Mexico. We select 256 sites arranged on
a 16 × 16 lattice with spacing 0.25◦ (approximately 28km).
As shown in Fig. 3), the extreme wave heights clearly depend
on location and direction. Thus, we expect the proposed
model is well suited for this data set.
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Fig. 3: Non-stationarity in GOMOS data: (a) Histogram of
four randomly selected sites; (b) Wave height w.r.t to direc-
tion.

We next test the four models. For the proposed model
and the directional model, we discretize the wind direction in
6 sectors of 60◦. The resulting BIC values for the locally fit
model, the spatial model, the directional model and the spatio-
directional model are 3.4979× 105, 3.5960× 105, 3.3475×
105 and 3.3402 × 105. Again, the spatio-directional model
achieves the best BIC score. The directional model also per-
forms well but it ignores the spatial variation which is essen-
tial to model the extreme wave heights in the Gulf of Mex-
ico [8]. On the other hand, the spatial model does not properly
consider the strong directional variation (see Fig. 3b), while
the locally fit model overfits the data by introducing too many
parameters. Obviously, the proposed model is preferable.

5. CONCLUSION
We proposed a novel model to efficiently accommodate the
covariate effects of extreme events, significantly improving
the modeling accuracy. The extension to an arbitrary number
of covariates is straightforward.
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