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ABSTRACT

We study the effectiveness of non-uniform randomized fea-
ture selection in decision tree classification. We experimen-
tally evaluate two feature selection methodologies, based on
information extracted from the provided dataset: (i) leverage

scores-based and (ii) norm-based feature selection. Experimen-
tal evaluation of the proposed feature selection techniques in-
dicate that such approaches might be more effective compared
to naive uniform feature selection and moreover having com-
parable performance to the random forest algorithm [3].

1. INTRODUCTION

Living in the era of Big Data, massive amount of informa-
tion is now publicly available, aggrandizing our expectations
for new developments, both in well-established and contem-
porary scientific tasks. However, this ever increasing data
often contradicts with the principle of parsimony: in a high-
dimensional feature space the proper selection of features,
that results in succinct descriptions of the problem, cannot be
easily derived. This fact jeopardizing the interpretability of
the solution. This curse of dimensionality can also pose diffi-
culties with respect to the qualitative performance of methods,
imperilling their accuracy as well as their robustness in the
case of noise and outlier presence.

An important application that suffers from this difficulty
is classification. An abstract description for the case of binary
classification is given below:

BINARY CLASSIFICATION PROBLEM: Assume

Dtrain = {(X1, y1) , ... (Xn

, y

n

)}
be a collection of n supervised train feature vectors X

i

2 Rd

with

corresponding labels y

i

2 {±1}. Given Dtrain, we want to learn

a classifier C : Rd ! {±1} such that, for an unsupervised input

Dtest = {X
j

: X
j

/2 Dtrain}, C computes labels on the elements of

Dtest with the lowest possible classification error.

Several cases have been reported in the literature where clas-
sification using the over-complete set of features (i.e., without
proper selection or pre-processing) can be as poor as random
guessing, due to noise accumulation in the high-dimensional
feature space [10].1 Wherefore, irrelevant or redundant infor-
mation “interfere” with useful one and its removal could gain

The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement no

259569.
1The authors in [10] demonstrate further that almost all linear dis-

criminants can perform as poorly as the random guessing.

in classification. Fortunately, common wisdom indicates that,
in practice only a few features are important for classification
and thus such removal is applicable [1]; e.g., in DNA data
[32, 11], only a few genes are influential in a gene sequence ex-
pression. Moreover, an excessive number of attributes usually
results in prohibitive running times and storage requirements
during training for real-time applications; in memory-limited
cases, further post-processing is required [21].

In stark contrast, training a well-behaved individual clas-
sifier with a predetermined and fixed subset of features over a
restricted train dataset is a difficult task; it often creates over-
fitting issues, where the loss of generalization is observed on
incoming new data. To overcome this difficulty, recent devel-
opments [18, 17, 15], based on [20], have proposed the system-
atic construction of classifiers: randomly and independently
selected subsets of features are used per learner and the final
decision is taken as a majority (averaging) rule over the collec-
tion of learners for the given data; such structures are gener-
ally known as classifier ensembles [7].

However, a naive selection of features might still doubt
the practicality of classifier ensembles in such settings: the
random selection might lead to extremely “weak” learners,
increasing drastically the number of ensemble components
required for a desired classification error. Moreover, the au-
thors of [19] highlight the exponentially increasing space-
complexity of tree-based ensembles to achieve a given ac-
curacy; thus, more sophisticated selection procedures might
lead to less expensive constructions.

To this end, a compromise between these two extremes is
imperative in practice: by judiciously selecting a subset of sig-

nificant attributes, allowing randomness during the selection,
one can achieve acceptable classification accuracy and desired
generalization attributes with low space complexity.

Our contributions: In this context, sophisticated dimension-
ality reduction techniques might play a crucial role. Instead of
selecting features uniformly at random, we utilize linear alge-
braic techniques to “bias” the selection procedure. Based on
the work [9, 23, 30], we use matrix-based information scores
to define a non-uniform probability distribution that favors
more dominant features.

Empirical results show an overall improved classification
capability using our approach, as compared to classic state-of-
the-art schemes for a given training time period.

2. RELATED WORK

As already mentioned above, a classical technique in classifi-
cation focuses on the idea of ensemble classifiers: by combining
a set of “weak” learners that approximate the training data,
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one could obtain a “strong” classifier, i.e., a classifier with bet-
ter generalization performance (see e.g., [13]). Based on this
approach, one can generate several “weak” learners by apply-
ing one or combination of the following designs:
(i) Feature selection: each classifier is trained over a selected

subset of features—e.g., for an excellent introduction, see
the subspace method proposed in [18, 17] and the Ran-
domized C4.5 algorithm in [8], following the work [1].

(ii) Training data subsampling and reweighting: each classifier is
trained over a subset of the training samples; then, the
sample selection scheme is re-weighted, based on the clas-
sification error in the previous iteration—e.g., see the cele-
brated Boosting technique [31] and references therein.2

(iii) Linear combination of features under random low-dimensional

embeddings, where each learner uses the whole spectrum
of features, trasformed by random linear mappings.

There are several works in the literature where combina-
tions of the above designs are used in practice—e.g., Random
Forests with feature selection and data subsampling [3].

In [1, 17, 8, 12], the authors consider case (i) where the ran-

dom model is proposed: to train a “weak” learner, each feature
is selected uniformly at random, ignoring any prior informa-
tion. While such strategy is maximally “unbiased” and easy to
implement, it might lead to lower classification accuracy when
a small number of features is selected each time or to higher
complexity, due to the larger amount of classifiers required for
a given accuracy level. In [18, 12], the authors further extend
this strategy to node optimization for tree-based ensembles: at
every level of each decision tree in the ensemble, the splitting
decision rule over each node is derived using a random subset
of features; in this work, our proposal does not consider this
case and we leave it as a future research direction.

In this context, [3, 12] show that randomization yields
strict improvements over simple deterministic selection heuris-
tics.3 While simplicity helps, randomization is particularly
useful in “adversarial” settings where “bad” features are
present. [3] states the accuracy of RFs is insensitive to ran-
domness in practice, see also [12]. However, subsequent
developments on tree-based classifiers do not espouse this
virtue. The author in [28] proposes the ReliefF feature eval-
uation metric: the significance of each attribute is inversely
proportional to what extent its values separate similar ob-
servations into different classes; details of this algorithm are
provided in [29]. [4] proposes the Probabilistic RFs where fea-
ture selection procedure is further linearly transformed with
linear kernels. Such works amplify the suspicion that one can
achieve more by applying sophisticated selection strategies
rather than the blind randomization model.

In this paper, we attempt to raise this suspicion even more:
we study several matrix-based sampling measures in order
to signify important features in the selection procedure for
higher classification accuracy.

3. PROBLEM SETTING

Throughout this paper, we use decision trees as “weak” learn-
ers; an illustrative example for a binary decision tree is given

2To use such approach, one assumes many passes over the data.
3A non-exhaustive list of such rules in the case of tree-based classi-

fiers includes Gain ratio and Gini index, designed to result into simple
models for classification.

� ��� ��

Fig. 1: Toy-example decision tree with two features x1, x2.
Here, A denotes the full sample set, B,C ✓ A are subsets sat-
isfying the decision rule on node A. Leaf nodes contain only
samples from class 1 or �1.

in Figure 1. These structures have inherent interpretation
capabilities due to the explicit decision rules on the split-
ting nodes, are non-parametric, easy to implement and ex-
tremely fast to train, as compared to other classifiers. A
non-exhaustive list of alternatives include linear classifiers
[33, 22], Support Vector machines [6, 14], Neural Networks
[34], etc; we conjecture that our proposed feature selection
scheme can be easily applied to these cases and we leave this
research direction for future work.

In the realm of random decision tree ensembles, we gener-
ate a set of decision trees, built on a subset of the initial feature
set. We construct the ensembles as follows: for each tree, we
sample non-uniformly and independently at random a set of k
features. Then, we train a decision tree classifier in its entirety
(with a deterministic splitting criterion), restricted on these k

features.
It is important to notice that the above randomized proce-

dure is quite different than Breiman’s random forest algorithm
(RFs) [3, 18]. In a parameter free implementation of RFs with-
out bagging, each tree of the forest utilizes randomness in the
splitting process of its construction. Conventional wisdom in-
dicates that, at each node during the tree growing process, an
uniformly random (and possibly different) sample of

p
d fea-

tures is utilized.

4. OUR APPROACH IN A NUTSHELL

To describe the main ideas of our approach, assume that we
represent the training dataset of n objects with d features
as an n ⇥ d real4 matrix A. We propose the LEverage
ScoreS (LESS) tree ensemble algorithm, a two-phase clas-
sifier construction, as reported in Algorithm 1. Let ⇧ :=
{⇡1,⇡2, . . . ,⇡d

} denote a probability distribution over the
set of features that signifies the importance of features over
Dtrain. In the first phase, we compute ⇧, based on ideas de-
scribed in Section 5. Next, we “feed” ⇧ into the second phase
of our approach where: (i) we select k features according to ⇧
and, (ii) based on these features, we generate t decision trees.
Finally, the collection of these decision trees is gathered and a
standard majority voting scheme is applied to derive the pre-
dicted labelling of the model. Namely, given a set of decision
trees and an unlabelled example, the algorithm returns as its
predicted label the most frequent label over all the decision
trees.

4We implicitly assume that features are real-valued.
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Algorithm 1 LEverage ScoreS (LESS) Trees

1: procedure LESS(A, y, t, k) . A 2 Rn⇥d

,y 2 {±1}n
2: . t, k 2 N: # of trees and features
3: Compute ⇧, according to Eqn. (1).
4: for k = 0, 1, 2, . . . , t� 1 do
5: Sample k features of A using ⇧.
6: Construct A(k) 2 Rn⇥k restricted to the k features.
7: Train decision tree using (A(k)

,y)
8: end for
9: Output: collection of t trees.

10: end procedure

Several remarks can be highlighted about the above algo-
rithm. First, each decision tree is constructed on only a subset
of features of size k (usually k is between 10 and 50); hence, as
we show in Section 6, Algorithm 1 has computational advan-
tages over models that compute the best split over the whole
feature set. Along the same lines, the resulting collection of
trees are more interpretable than RFs since each tree depends
only on a small set of features. Last, the random process de-
scribed in Algorithm 1 is simpler than the random forest algo-
rithm [3] and hence might be amenable to theoretical justifica-
tion in the future.

5. FEATURE SELECTION SCHEMES

Exploiting the full spectrum of features creates a tradeoff be-
tween interpretability and predictive accuracy. Thus, an im-
portant step to process such large-scale data is to construct an
“importance score” for each column of A to denote the influ-
ence of the corresponding feature. Given such measure, we
can then sample a predefined number of features k for each
decision tree, based on these scores.

In this section, we describe three subsampling techniques
for feature selection: (i) uniform sampling, (ii) column
squared-norm based sampling and, (iii) leverage scores-
based sampling [9] (to be defined shortly).

Uniform sampling: each feature is selected with equal prob-
ability. Both strategies, where features are selected with or
without replacement, have been tested; cf., [17, 18]. We use
this policy as the baseline performance in our experiments.

Norm-based sampling: Recent developments on geometric
functional analysis have dictated that squared norm subsam-
pling can approximate well large datasets incurring small
spectral norm [30]. Namely, in our setting sampling the i-th
feature with probability proportional to kA

i

k22 where A
i

is the
i-th column of A and k·k2 denote the Euclidean norm.

Statistical leverage scores sampling: The goal of statis-
tical leverage scores is to construct a judiciously-chosen
nonuniform importance sampling distribution over the set
of columns, based on factorizations of A, according to the
following definition:

Definition 1 (Statistical leverage scores [5, 9]) Let A 2 Rn⇥d

be a data matrix with n objects and d features with r := rank(A) 
n for n ⌧ d. Moreover, let A = U⌃V>

be its Singular Value
Decomposition (SVD) where V 2 Rn⇥r

contains the set of right

singular column vectors. The normalized statistical leverage scores

over the set of columns of A are defined as:

⇡

j

=
1
r

rX

i=1

(v
i

(j))2, for j = 1, . . . , d, (1)

where v

i

(j) denotes the j-th entry of the i-th right singular vector.

We highlight that, while sampling schemes (ii) and (iii) are
slower than the simple uniform sampling, both result into
generally higher classification accuracy for given sampling
volume as we show in Section 6. Moreover, strategy (iii) can
be well-approximated using fast randomized algorithms [23].
We note that leverage scores converge to uniform sampling
when the coherence of the data matrix is small and scheme
(i) turns to be the optimal; thus, scheme (iii) can be consid-
ered as a more generic selection strategy that includes (i) as a
special case.

6. EXPERIMENTS

In this section, we experimentally compare Algorithm 1 with
two variants of Algorithm 1: (i) the case where Step 4 is re-
placed with uniform/norm-based feature sampling and (ii)
the classical Breiman’s RFs algorithm [3]. Here, we highlight
a subtle distinction between the RFs algorithm and all other
algorithms under comparison. During the tree construction,
RFs utilizes randomness for deciding the next split. Namely,
at each node (assuming an additional split has been decided
to be made), RFs selects d

p
de features uniformly at random

on which the best split is selected. Therefore, one expects each
resulting tree to possibly depend on all features as opposed to
Algorithm 1 that depends on only k features.

Datasets: For the real-world datasets we used four publicly
available5 datasets that we denote by MNIST, ORL, PIE and
MADELON. The MNIST dataset of handwritten digits has a
training set of 60,000 examples, and a test set of 10,000 ex-
amples [2] (a sample of 10, 000 training examples and 5, 000
test examples is used here). ORL contains ten different images
each of 40 distinct subjects [26]. There are 400 different objects
in total, each having 4096 dimensions. PIE is a database of
41,368 images of 68 people [27]. Namely, there are in total
2856 data points with 1024 dimensions. The MADELON dataset
is an artificial test case, multivariate and highly non-linear,
part of the NIPS 2003 feature selection challenge. The data
points of MADELON is 2000 containing 500 features. These
datasets have been selected due to their high-dimensional
feature space and/or their heavily usage as benchmarks for
classification.

Experimental setup: To measure the impact of leverage scores
on the classification performance on random decision trees,
we perform a series of diverse experiments on the above
datasets. In all reported results, we use the average values
of 30 independent executions of its corresponding algorithm.
For the LESS algorithm, we truncate the computation of SVD
to rank r = 50 for acceleration. We measured the performance
of Algorithm 1 for various settings of k and t, i.e., the number
of features to be sampled and the number of trees, respec-
tively. No bagging is performed on the RFs algorithm and the

5Most of the datasets used here are available under UCI’s machine
learning repository [2].
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Fig. 2: Each column corresponds to a dataset. The first row depicts the classification error versus the elapsed training time for increasing number
of trees. The second row depicts the classification accuracy versus the number of trees.

default number of subsampled features is selected, i.e.,
p
d.

All timings were performed under MATLAB R2011b [24].
Numerical results: We report our experimental evaluations in
Figure 2 and in Table 1. In the first row of Figure 2 we depict

Total number of nodes for given ✏ classification accuracy
✏ RFs Uniform Norm Lev. Scores

MNIST ⇠ 7% 102066 125152 92064 93527
ORL ⇠ 12% 5498 5568 5566 5587

MADELON ⇠ 26% 26407 >T >T 4003
PIE ⇠ 1% 18198 20632 24851 19137

Table 1: Total number of nodes using k = 50 features.

the classification error versus the elapsed training time for a
pair of train and test data. The rationale behind this plot is
to demonstrate that Algorithm 1 can achieve similar or bet-
ter classification error than RFs with lower computational re-
quirements. In all cases, LESS algorithm with k = 50 is su-
perior or matches the performance of RFs. On the other hand,
the performance of Algorithm 1 with k = 10 is not superior
in all cases. This is due to the small value of k. Hence, a sug-
gestive setting of k in Algorithm 1 is in the range [

p
d, 2

p
d].

However, in stark contrast with conventional wisdom, there
are cases where only k = 10 features, selected using leverage
scores, seem to be sufficient to achieve the same or even better
classification accuracy in much less training time, increasing
the interpretability of the result due to the limited number of
used features; e.g., see Figure 2(first row) for the cases ORL
and PIE. Moreover, an increased number of features usually
results in an increased processing time, with no further clas-
sification error improvement. Overall, we observe that LESS
trees are at least as accurate as RF, while being less computa-

tionally expensive in practice.
The second row of Figure 2 depicts the classification accu-

racy versus the number of trees. We observe that Algorithm 1
with k = 50 matches the performance of RFs in terms of num-
ber of trees. Moreover, in the MADELON dataset Algorithm 1
is superior to RFs, which in turn, RFs is superior to both uni-
form and norm based feature selection. On the other hand,
Algorithm 1 with k = 10 does not perform well.

We further study the space complexity of the resulting en-
sembles as a function of the total number of nodes needed
among all trees to achieve a predefined classification error ✏ >
0. We also set up a time threshold limit value T = 3600 sec-
onds (1 hour) per approach to achieve accuracy ✏. Table 1
shows the reported space complexities for all test cases. As
observed, both RFs and LESS trees has similar (or even bet-
ter) space complexity for given ✏. From a different perspec-
tive, in a memory-limited scenario where only a fixed number
of nodes can be maintained, non-uniform feature sampling
leads to equivalent, if not better, mis-classification error level,
as compared to uniform feature selection and/or RFs.

7. DISCUSSION AND FUTURE WORK

In this work, we study feature selection strategies in classifica-
tion, both in terms of time/space-complexity efficiency as well
as of classification accuracy. Overall, results indicate that the
proposed tree ensemble, based on leverage scores, might out-
perform the state-of-the-art RFs [3], as well as schemes where
uniform weighting is applied. We observe that the proposed
scheme results into low space-complexity trees for better inter-
pretability, requires overall less training time and has at least
the same accuracy, as compared to top-notch approaches.
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