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ABSTRACT

Methods for hypothesis testing on zero-mean vector-valued
signals often rely on a Gaussian assumption, where the
second-order statistics of the observed sample are sufficient
statistics of the conditional distribution. This yields fast
and simple tests, but by using information-theoretic statistics
one can relax the Gaussian assumption. We propose using
Rényi’s quadratic entropy as an alternative to the covariance
and show how a linear projection can be optimized to max-
imize the difference between the conditional entropies. In
addition, if the observed sample is actually a window of a
multivariate time-series, then the temporal structure can be
exploited using the generalized auto-correlation function,
correntropy, of the projected sample. This both reduces the
computational complexity and increases the performance.
These tests can be applied for decoding the brain state from
electroencephalogram (EEG) recordings. Preliminary results
are demonstrated on a brain-computer interface competition
dataset. On unfiltered signals, the projections optimized with
the entropy-based statistic perform better than those of com-
mon spatial pattern (CSP) algorithm in terms of classification
performance.

Index Terms— array signal processing, BCI, correntropy,
EEG, entropy, feature extraction, hypothesis testing, projec-
tion pursuit

1. INTRODUCTION

Deciphering the brain state from electroencephalogram (EEG)
recordings is a difficult challenge even in the two-condition
setting common for brain computer interfaces (BCIs) [1].
One approach is to exploit spatial differences in the neural
response across the electrode array. Essentially, this amounts
to array signal processing with non-stationary signals in a
low signal-to-noise setting. In this setting, any model may be
hard to fit, but using a zero-mean multivariate Gaussian dis-
tribution as the model for the conditional distribution yields a
simple test statistic for classification.
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This test statistic can be used to optimize a spatial pro-
jection matrix for EEG recordings, using only the estimates
of the covariance in both classes and eigendecompositions.
In the pattern recognition literature this is known as the
Fukunaga-Koontz transform [2, 3], in the EEG analysis lit-
erature it has became popular for extracting features for
motor imagery classification and is known as common spatial
patterns (CSP) [4]. For both its speed, effectiveness, and
ease-of-understanding this approach has been used exten-
sively in the BCI research community, and there has been a
wide literature of extensions to increase performance [5, 6].

Here we revisit this problem within a non-Gaussian
framework using an information theoretic learning perspec-
tive [7]. We implicitly form a non-parametric model using
kernel functions and use Renyi’s quadratic entropy [8] as a
test statistic. We optimize spatial projection that maximize
the entropy of the data under one condition while minimizing
it under the other condition. This use of an implicit model
allows the projection to be optimized on unfiltered data.

As opposed to kernelizing the projection [9], which ob-
fuscates a spatial interpretation, we use kernel functions to
compute the test statistic, but a linear projection of the mul-
tichannel signal is still used. In terms of information theory,
previous work [10] has proposed using approximations of ne-
gentropy to optimize projections as an alternative to CSP;
however, the test statistic was still based on the variance of
the projected signal.

While the proposed approach improves performance, it
along with previous approaches often ignore any temporal in-
formation within a sample. Thus, we propose to use a pri-
ori information to select certain lags of the correntropy func-
tion, which is a generalized measure of the correlation func-
tion [11]. Not only does this approach improve performance,
but it also decreases the computational complexity versus the
temporally uninformed measure.

We test the approach using a benchmark BCI dataset. We
show that—for unfiltered data—optimizing the spatial projec-
tion using the information-theoretic objective improves the
performance further, and using correntropy over a subset of
the lags yields the best performance.
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2. COVARIANCE-BASED TEST STATISTICS

Let X denote a random variable with domain IRd. The distri-
bution ofX is conditioned on the value of a binary variableC,
and the conditional probability density functions for C = 0
and C = 1 are denoted fX(x|0) and fX(x|1), respectively.
We consider the problem of testing which value of C is more
likely based on the logarithm of the likelihood ratio:

L(x) = ln

(
fX(x|1)

fX(x|0)

)
. (1)

When fX(x|c) is a zero-mean Gaussian distribution with
covariance matrix Σc,

L(x) ∝ tr
[(

Σ−10 − Σ−11

)
xxT

]
. (2)

Given a sample of vectors {x}, a test statistic can be formed
as T ({x}) = tr(AB) ∝

∑
i L(xi) where the matrix A =

Σ−10 −Σ−11 is symmetric, andB =
∑
i xix

T
i is scatter matrix

of the sample.
This test uses the covariance of the sample in all dimen-

sions. In practice it is sufficient to test the variance in a lin-
ear subspace in essence using a lower-rank approximation,
A ≈ PPT, where the matrix P defines the projection. The
log-likelihood ratio is replaced with the new test statistic:

TP ({x}) = tr(PPTB) = tr(PT
∑
i

xix
T
i P ) (3)

= tr

[∑
i

(PTxi)(P
Txi)

T

]
=
∑
i

‖yi‖22, (4)

where yi = PTxi. To improve the power of the test, the
matrix P should be to chosen to maximize the divergence be-
tween TP (X|C = 1) and TP (X|C = 0). One approach is
to constrain P to be orthonormal, PTP = I , and maximize
E[TP (X|C = 1)] while minimizing E[TP (X|C = 0)]. In
terms of the covariance matrices,

E[TP (X|c)]=tr
(
PTE[XXT|c]P

)
= tr

(
PTΣcP

)
. (5)

This leads to the trace ratio problem:

maximize
PTP=I

{
TP (X|1)

TP (X|0)
=

tr
(
PTΣ1P

)
tr (PTΣ0P )

}
. (6)

There is no closed-form optimal solution to the trace-ratio
problem [12], but the ratio of the determinants requires no
constraint on the orthonormality of P ,

maximize

∣∣PTΣ1P
∣∣

|PTΣ0P |
(7)

and can be solved as a generalized eigenvalue problem.
Practically, the test statistic TP ({x}) =

∑
i‖yi‖22 can be

treated as a feature for the binary classification problem. In-
stead of using only a projection that maximizes the objective,

projections that minimize the objective are also used. When
a sample is a window of a time series, then the test statistic
is a short-term measure of the projected signal’s power. To
normalize the conditional power distribution a log transform
is typically used [4]. In addition, the variance in each direc-
tion of the projection can be normalized by the total variance
of the projected sample. Explicitly, if P has m columns then
each feature vector has m elements and the jth element is
ln{
∑
i y

2
i (j)/[

∑
k

∑
i y

2
i (k)]} [4]. However, this normaliza-

tion eliminates one degree of freedom of the features and can
decrease performance.

3. KERNEL-BASED QUADRATIC ENTROPY

Again letX denote the random variable with domain X = IRd

and {x} denote a sample. Now consider a possibly non-
linear embedding of this sample into a reproducing kernel
Hilbert space (RKHS) defined by the positive definite kernel
κ : X × X → R. Associated with κ there is an implicit
mapping φ : X→ H that maps any element x ∈ X to an ele-
ment in the Hilbert space φ(x) ∈ H such that the kernel eval-
uation corresponds to an inner- or dot-product: κ(x, x′) =
〈φ(x), φ(x′)〉 = φ(x)Tφ(x′). Here we abuse notation the no-
tation for matrix transpose for elements in the RKHS. Given
a sample, the kernel matrix is formed as Kij = κ(xi, xj); the
resulting matrix K is positive definite.

Using the RKHS embedding, we propose to compute the
test statistic (3) using the the operator ΨΨT. The new test
statistic is computed as S(x) = tr

[
ΨΨTφ(x)φ(x)T

]
.

Again, Ψ can be chosen to maximize the power of the
test. Instead of directly optimizing the operator, we pro-
pose to adapt φ and fix ΨΨT as EX′ [φ(X ′)φ(X ′)T] =
EX′ [φ(X ′)]EX′ [φ(X ′)]T], where X ′ is an independent ran-
dom variable with the same distribution as X .

We write the test statistic using properties of the trace:

S(x) = tr
[
EX′ [φ(X ′)φ(X ′)T]φ(x)φ(x)T

]
(8)

= EX′ [φ(X ′)Tφ(x)φ(x)Tφ(X ′)] (9)

= EX′ [κ(X ′, x)κ(x,X ′)] = EX′ [κ2(x,X ′)] (10)

The mean of the test statistic,

EXS(X) = EXEX′ [κ2(X,X ′)] = V (X,X ′), (11)

is known as the cross-information potential [7] between X
and X ′. Since X ′ is simply an independent but identically
distributed version of X we denote V (X,X ′) as V (X).

Now, we consider optimizing φ to separate EX|0S(X) and
EX|1S(X). Since each point in a sample corresponds to a
vector, we use a multivariate Gaussian kernel parametrized
by a projection matrix P :

κP (x, x′) = exp{−(x− x′)TPPT(x− x′)}. (12)
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With this kernel, the test statistic is proportional to the density
of an unweighted mixture of Gaussians with equal covariance

SP (x) = EX′
[
exp{−(x−X ′)TPPT(x−X ′)}

]
. (13)

In terms of kernel density estimation, κ2P is a Parzen window
and SP (x) = EX′ [κ2P (x,X ′)] ∝ pX(x). Taking the expected
value, E[SP (x)] = VP (X) ∝ EX [pX(X)]; the negative loga-
rithm of the right hand side is Rényi’s quadratic entropy [8].

For the conditional distributions,

VP (X|c) = E[SP (X|c)] = EX|cEX′|c[κ
2
P (X,X ′)]. (14)

Under the convention above, we would like to choose P to
maximize E[SP (X|1)] while minimizing E[SP (X|0)]. This
leads to an unconstrained optimization problem

maximize
P

g(P ) =
E[SP (X|1)]

E[SP (X|0)]
=
VP (X|1)

VP (X|0)
. (15)

Taking the logarithm of the objective function,

lnVP (X|1)−lnVP (X|0))∝−H2(X|1)+H2(X|0). (16)

Thus, it is clear that optimizing with this objective yields a
projection that minimizes the entropy of X|1 while maximiz-
ing the entropy of X|0.

Given a single sample X = {x} and the corresponding
kernel matrix KP , a biased estimator1 of VP (X) is

ṼP (X ) =
∑
i,j

κ2P (xi, xj) =
∑
i,j

[KP ]2i,j = tr(K2
P ). (17)

Then hP (X ) = −ln ṼP (X )=−ln
∑
i,j

[KP ]2i,j (18)

is a test statistic that is proportional to Rényi’s quadratic en-
tropy [13] under the model defined by P . Thus, for succinct-
ness, we refer to Eq. (18) as projentropy.

In an information-theoretic setting, it would seem more
efficient to exploit the divergences between the classes [6].
For instance if the distribution of X ′ was fixed to the distri-
bution of either X|1 or X|0, then Eq. (13) would utilize any
difference in the distributions. However, this would require
to choose and keep a dictionary of samples to represent X ′.
With the proposed approach, the test statistic does not require
access to any previous samples; this eliminates the need to
store samples between trials, or have to store every sample a
problem that can plague kernel-based learning machines.

3.1. Gradients and optimization

Using the entropy ratio (16) as a surrogate for log-likelihood
ratio (2), we consider optimizing P using the following cost
function

F(P ) = EX|1[hP (X )]− EX|0[hP (X )]

=−EX|1[ln tr(K2
P )] + EX|0[ln tr(K2

P )]. (19)

1An unbiased estimator simply ignores the diagonal of the kernel matrix.

The projection that minimizes the entropy of one class is not
necessarily orthogonal to the one that minimizes the entropy
of the other class. Thus, for feature extraction both projec-
tions should be found. In addition, for the multi-class setting
each class can be substituted for class 1, and the rest of the
classes can be pooled into class 0.

The gradient of the cost function, with respect to P , is

∇PF(P ) =−EX|1[4XTDXP ] + EX|0[4XTDXP ] (20)

D = (G ◦KP )− diag(1T(G ◦KP )) (21)

G = ∇KP
ln tr(K2

P ) =
2KP

tr(K2
P )

(22)

where hereX is a n×dmatrix where each row corresponds to
a point in the sample, ◦ is the Hadamard element-wise prod-
uct, and 1 is a vector of ones. We use limited-memory BFGS
to optimize P in MATLAB using minFunc [14]. The initial
solution is chosen to have normally distributed entries with
unit variance, and the optimization is stopped after 50 itera-
tions.

The computational complexity of the statistic for a sample
of n points with a n×n kernel matrix isO(n2); whereas, the
covariance statistic has complexity O(m2n) for a m dimen-
sional projection. With a set ofN samples, the computational
complexity of the derivative isO(Nn2), and the convergence
time is dependent onm—this is much greater than the overall
complexity of CSP that is O(m3).

4. TEMPORALLY-INFORMED PROJENTROPY

The covariance and entropy-based tests ignore any temporal
structure within a sample, treating the set of points as inde-
pendently distributed. When each sample is a window from
a time-series, we can consider using statistics based on the
auto-correntropy function [11], which is a generalized ver-
sion of the auto-correlation function. Correntropy has been
used to analyze the periodicity of signals [15] or extract infor-
mation via the kernel-based representation [16]. Specifically,
the auto-correntropy function is defined for the process xt as
v(τ) = E[k(xt,xt+τ )], where k is chosen as a shift-invariant
kernel function.

We assume we have a priori information on the specific
temporal structure. Let T = {τ1, τ2, . . . τm} denote the set of
lags of interest. Then a simple test statistic can be formed as
an unweighted combination across lags

VT (xt) =
∑
τ∈T

v(τ) =
∑
τ∈T

E[k(xt,xt+τ )]. (23)

Returning to multivariate time series, we set k = κ2P
which uses a linear projections across channels. Then VT (xt)
is a combination of the statistic (13) with the distribution of
X ′ fixed at xt+τ , τ ∈ T .

Given a sample X that corresponds to a window of
a discretely sampled time series, i.e., X = [x]ni=1, the
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sample-version of correntropy uses the time average: ṽ(τ) =∑n−τ
i=1

1
n−τ k(xi, xi+τ ). The test statistic for a sample is

ṼP,T (X ) =
∑
τ∈T

ṽ(τ) =
∑
τ∈T

n−τ∑
i=1

1

n−τ
κ2P (xi, xi+τ ). (24)

Then hP,T (X ) =−ln ṼP,T (X ) is a temporally informed
version of projentropy (18), which uses only a part of the ker-
nel matrix (17). Beyond the ability to restrict attention to cer-
tain periodicities, the calculation of hP,T (X ) requiresO(mn)
operations where m = |T |. Since m can be chosen to be
much smaller than n, this requires far fewer calculations than
the entropy-based statistic. We leave the problem of optimiz-
ing temporally-informed projentropy for future work.

5. EXPERIMENTAL SETUP AND RESULTS

For preliminary testing we used the BCI competition III
dataset IV(a), [17], provided by Fraunhofer FIRST, Intelli-
gent Data Analysis Group (Klaus-Robert Müller, Benjamin
Blankertz), and Campus Benjamin Franklin of the Charité–
University Medicine Berlin, Department of Neurology, Neu-
rophysics Group (Gabriel Curio) [18]. Five healthy subjects
performed cued segments of right hand and right foot motor
imagery. For each subject, 140 trials of each class, 280 trials
in total were provided. Classification was performed using
5×5 cross validation, where the labels for the test trials set
apart in the competition are also used indiscriminately.

We used the framework and implementations provided in
the NFEA toolbox [19, 20] to analyze the dataset in MAT-
LAB. For each trial the 3.5 s window during the visual cue
was extracted, and only the window from .5 s to 2.5 s was
used (201 time points). No filtering was applied.

A simple setup for features extraction and classification
was used to compare the covariance-based projection with
the projentropy-based projection. We used the traces from
13 electrodes over the left motor area: (C5, C1, CCP7, CCP3,
CCP1, CP5, CP3, CP1, CPz, PCP5, PCP3, PCP1). Two spa-
tial projections, one for each class, were optimized using only
samples in the training set. Each projection itself was 1-
dimensional. Thus, only 2 features were used to classify each
trial.

We used either the variance, entropy, or correntropy at
specific lags of the projected signal as the features. The vari-
ance required no free parameter. In addition, there is no free
parameter when the projentropy statistic is used with a pro-
jection optimized using projentropy. When the projentropy
statistics are computed on the CSP projection, the projection
is scaled such that median distance between all projected time
points is 1.

For the temporally-informed projentropy, lags were cho-
sen a priori to correspond to the fundamental and second
harmonic of signals at around 6.7 Hz. This is close to the
high-pass cutoff when filtering is applied. A number of lags

surrounding the fundamental period of 15 samples at 100 Hz,
were used: T = {0, 1, 13, 14, 15, 16, 17, 27, 28, 29, 30, 31, 32, 33}.

Table 1. Motor imagery classification accuracy (% cor-
rect). The average and standard deviation across 5×5 cross-
validation (224 training and 58 testing samples). Projections
are found via common spatial patterns (CSP) or projentropy
(P) and the variance (σ2), Rényi entropy (H2), or corren-
tropy at certain lags (VT ) are used as features. Only two
one-dimensional projections are found for each method. Lin-
ear discriminant analysis is used for classification. (Bold in-
dicates methods with significantly better performance for a
given subject or average as determined by a paired sign test
with significance of α = 0.1.)

Subject CSP|σ2 CSP|H2 CSP|VT P|H2

aa 63±4.0 63±4.0 64±4.1 74±1.3
al 88±1.2 88±0.8 90±0.4 87±0.5
av 56±1.5 56±2.0 63±1.4 63±3.5
aw 75±2.5 75±3.0 77±0.9 76±0.3
ay 73±1.0 76±1.6 87±1.1 74±1.2
Across all 71±12 71±12 76±12 75±8.5
Run-time (s) 0.1±0.0 1.7±0.1 1.3±0.1 89±3.1

After extraction, the two-dimensional feature vectors
were classified using linear discriminant analysis [21]; the
results are shown in Table 1. A significant increase in clas-
sification performance was seen when using the alternative
statistics as features. Optimizing the two projections using
projentropy-based cost function yielded a increase of 4 per-
centage points over CSP. Even with the CSP projection, the
temporally informed projentropy-based features yielded the
highest accuracy with a increase of 5 percentage points. As
stated in Section 4, future work should address optimizing the
projection based on temporally informed projentropy P|VT .

6. CONCLUSION

We proposed projentropy as a method for training projections
that discriminative based on the entropy of a sample instead of
the variance. For unfiltered signals, projentropy improves the
classification accuracy over using CSP. The main drawback
of projentropy is the increased computational complexity. It
is noteworthy that the temporally informed measure, which
has the lowest computational complexity, yielded the best re-
sults. This motivates future work on the study of the effect of
temporal information to substitute for linear filtering.
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