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ABSTRACT

We consider the problem of finding the same pattern in multiple sets.

This problem can be applied in a variety of signal processing and ma-

chine learning problems including DNA sequencing and detection of

electrical signatures. In our problem setting, each set contains only

a single unknown pattern of interest among many other patterns. To

understand the performance limitations associated with this setting,

we focus on the evaluation of the Cramér-Rao lower bound (CRLB).

We introduce a probabilistic model for the problem. The random

position of a pattern in a given set gives rise to a mixture model and

consequently a non trivial CRLB analysis. We present the derivation

of the CRLB for the problem and provide a numerical evaluation

of the CRLB. We verify our expression for the CRLB against the

mean-squared-error of an iterative implementation of the maximum

likelihood estimator.

Index Terms—Cramér-Rao lower bound, Mean Squared Error,

Pattern Matching

1. INTRODUCTION

We consider the problem of finding the same unknown element in

multiple sets. This problem may arise in different application areas

including but not limited to: pattern matching, sequence alignment

in DNA sequencing, and dictionary learning. The problem presents

multiple challenges. First, no a-priori information is provided for the

element of interest. The search for the element of interest must be

performed blindly. This is different than matched filtering in which

an element in a set is matched with multiple known templates. The

second challenge is computational. When comparing two sets, one

can compare every element in the first set to every element in the

second set. The complexity associated with comparisons of elements

from multiple sets grows exponentially in the number of sets.

Template or pattern matching has been explored in several areas.

In [1], a Gibbs Sampling framework for estimating and identifying

multiple patterns in the DNA sequences is proposed. In communica-

tions and signal processing, matched filtering and correlation anal-

ysis have been used in the context of joint delay or angle of arrival

estimation. A pre-specified signal structure is a common assump-

tion, e.g., a predefined transmitted signal [2], sinusoidal model with

unknown frequencies [3], or a steering vector with unknown angles

or delays [4]. In computer science, fast pattern matching [5] for

text strings is preformed given a pre-specified template. The for-

mulation in our paper differs from the aforementioned frameworks

in that we are interested in an unknown pattern. A closer setup in

bioinformatics involves alignment of multiple sequences. While the

reference sequence is not defined, scoring different alignments using

the COBALT tool [6] enables the process of pattern discovery.

The problem formulation presents two important challenges.

The first challenge pertains to the development of algorithms that

would blindly identify a repeated pattern among multiple sets. The

second challenge involves modelling and performance limitations

study. In this paper, we focus on the latter. Our contributions in

this paper are as follows: (i) we formulate the problem of finding

the same needle in multiple haystacks as an inference problem and

present a novel probabilistic model for the problem; and (ii) we

obtain performance limitations for this problem using the derivation

and analysis of Cramér-Rao lower bound (CRLB).

2. PROBLEM FORMULATION

(a) (b)

Fig. 1: (a) Our setting: each set Xi is assumed to contain one in-

stance of a desired element s. Our goal is to identify the desired ele-

ment s along with the most similar element in each set, i.e., xi ∈ Xi.

(b) A graphical model for the alignment problem

2.1. Problem Setup

Consider the problem of finding the same unknown pattern across

multiple sets. To formulate this problem, consider N subsets

X1,X2, . . . ,XN of the d-dimensional Euclidean space Rd, i.e.,

Xi ⊆ R
d for i = 1, 2, . . . , N . Each set is assumed to contain

only one instance of the unknown pattern of interest (see Fig. 1(a))

among other patterns. Our goal is to obtain the pattern of interest.

In general, no distinguishing characteristics are provided for the

unknown pattern and hence it cannot be found when only one set

is available. The fact that the pattern of interest is repeated in each

set is key to its estimation. We proceed with a detailed probabilistic

model for the problem.

2.2. A Probabilistic Model

To model the problem of finding the same unknown element in mul-

tiple sets in a noisy setting, we start with a generative model for the

collection of sets. We begin by generating N sets, each containing

one instance of the pattern of interest in an independent fashion. For

the ith set, we assume the following generative process. Sample the

ith set position RV Ji uniformly in {1, 2, . . . , ni}. Then, generate

the ni elements in Xi according to

xij =



s + νij j = ji

νij j 6= ji
(1)
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for i = 1, 2, . . . , N and j = 1, 2, . . . , ni where s is a deterministic

unknown signal, the noise terms νijs are iid N (0, σ2I).

We determine the joint distribution of X1, . . . ,XN based on the

aforementioned generative process. For each i we organize the ele-

ments of Xi in a d × ni matrix Xi = [xi1, · · · ,xini
] and consider

joint distribution of the observations represented by the observation

matrix X = [X1, . . . , XN ] given the unknown vector s. Since we

assume that sets are generated in an independent fashion, we express

the joint distribution of sets as a product of their marginal PDFs:

f(X|s) =

N
Y

i=1

f(Xi|s). (2)

Since the position of the vector s, Ji, is a latent random variable

uniform over the set of positions {1, 2, . . . , ni}, we use the follow-

ing marginalization of Ji to obtain f(Xi|s) =
Pni

j=1 f(Xi|Ji =

j, s)P (Ji = j), where f(Xi|Ji = j, s) denotes the PDF of Xi

with s positioned in the jth element of Xi. As a result, we express

f(Xi|s) as a mixture:

f(Xi|s) =
1

ni

ni
X

j=1

f(Xi|Ji = j, s). (3)

We denote the PDF of a single element xij which does not con-

tain s as f0(·) and the PDF of a single element which contains s
as f1(·|s). Assuming that the elements in each set are drawn in-

dependently conditioned on Ji = j, we can express f(Xi|ji =
j, s) as a product of n − 1 iid RVs which follow f0 and one RV

which follows f1: f(Xi|Ji = j, s) = f1(xij |s)
Qni

j′=1 6=j f0(xij′).

An alternative version of f(Xi|Ji = j, s) is given by f(Xi|Ji =

j, s) =
f1(xij |s)
f0(xij)

Qni

j′=1 f0(xij′). Substituting this expression for

f(Xi|Ji = j, s) into (3) yields

f(Xi|s) =

ni
Y

j′=1

f0(xij′) ·
1

ni

ni
X

j=1

f1(xij |s)
f0(xij)

. (4)

Under the f0 model, xij is distributed N (0, σ2I) and under the f1

model, xij is distributed N (s, σ2I). Therefore the ratio
f1(xij |s)
f0(xij)

=

exp(−‖s‖2/(2σ2)) exp(sT
xij/σ2). Substituting this ratio and f0

into (4), we find f(Xi|s), substitute it into (2), and obtain

f(X|s) =

N
Y

i=1

`

e
− ‖s‖2

2σ2

ni
Y

j′=1

1
√

2πσ2
d
e
−

‖x
ij′

‖2

2σ2
1

ni

ni
X

j=1

e
sT

xij

σ2

´

.(5)

Note that f(X|s) can be expressed as f(X|s) = A(X)B(s)·
QN

i=1

Pni

j=1 exp(sT
xij/σ2), where A(X) =

QN
i=1

Qni

j′=1

√
2πσ2

−d

exp(−‖xij′‖2/(2σ2)) 1
ni

is only a function of the observations

X1, . . . , Xn and B(s) = exp(−N‖s‖2/(2σ2)) is only a function

of the parameter vector s. Note that in general the PDF f(X|s) is not

a member of the exponential family. However, the aforementioned

modeling approach yields a fairly simple log-likelihood

log f(X|s) = K − N‖s‖2

2σ2
+

N
X

i=1

log
`

ni
X

j=1

e
sT

xij

σ2

´

. (6)

The log-likelihood can be used to facilitate the derivation of the ML

estimator as well as the derivation of the CRLB. In this paper, we

set our goal to gain understanding of the performance limitations

associated with estimation of unknown template s. We proceed with

the derivation of the CRLB.

3. PERFORMANCE ANALYSIS

The Cramér-Rao lower bound (CRLB) on the MSE of an unbiased

estimator of s is given by the inverse of the Fisher information matrix

(FIM) FIM = E[ log f(X|s)
ds

log f(X|s)
ds

T
] [7]. Since the Xis are gen-

erated in an independent fashion, we have FIM =
P

i FIMi where

FIMi = E[ log f(Xi|s)
ds

log f(Xi|s)
ds

T
] is the FIM for a single set Xi [7].

Following the derivation in the Appendix, we obtain the expression

for FIMi:

FIMi =
b(ρ, ni)

σ2
(I +

a(ρ, ni) − b(ρ, ni)

b(ρ, ni)

ssT

‖s‖2
) (7)

where

a(ρ, n) = EZ [(
√

ρ(1 − W1) −
Pn

j=1WjZj)
2] (8)

b(ρ, n) =
Pn

j=1EZ [W 2
j ] (9)

Zj ∼ N (0, 1), j = 1, 2, . . . , n (10)

Wj =
eρδj1+

√
ρZj

Pn
l=1 eρδl1+

√
ρZl

, j = 1, 2, . . . , n (11)

and ρ = ‖s‖2

σ2 . Here a(ρ, n) and b(ρ, n) are defined as expecta-

tions of functions of (W, Z, ρ, n) wrt RVs Zjs keeping in mind that

the RV Wjs are dependent on (Z1, . . . , Zn, ρ, n). Both a(ρ, n) and

b(ρ, n) have the same limits: (i) a(ρ, n), b(ρ, n) → 1 as ρ → ∞
and (ii) a(ρ, n), b(ρ, n) → 1

n
as ρ → 0 (see Fig. 2). For the special
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Fig. 2: Plot of the function a(ρ, n) (×) and b(ρ, n) (◦) as a function

of ρ for n ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}.

case in which all sets have the same number of elements ni = n,

further simplification is possible. In this case, FIMi = FIM1 for

i = 1, 2, . . . , N . The FIM for s given X1, . . . , XN can be obtained

as N · FIM1 or explicitly as

FIM =
Nb(ρ, n)

σ2
(I +

a(ρ, n) − b(ρ, n)

b(ρ, n)

ssT

‖s‖2
). (12)

The CRLB is computed by inverting the FIM using the Sherman-

Morrison formula [8]:

CRLB =
σ2

Nb(ρ, n)
(I − a(ρ, n) − b(ρ, n)

a(ρ, n)

ssT

‖s‖2
). (13)

To determine the relative error given by
E[‖ŝ−s‖2]

‖s‖2 , we apply the

trace to E[(ŝ − s)(ŝ − s)T ] ≥ CRLB and obtain

E[‖ŝ − s‖2]

‖s‖2
≥ 1

NSNR
(
d − 1

d

1

b(dSNR, n)
+

1

d

1

a(dSNR, n)
), (14)

where SNR = ρ/d is the ratio between the energy of the signal ‖s‖2

and the total energy for a d-dimensional noise vector σ2d.
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(i) d ∈ {10, 50, 100}, n = 20, N = 50
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(ii) d = 100, n = 20, N ∈ {10, 50, 100}
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(iii) d = 100, n ∈ {10, 50, 100}, N = 50

Fig. 3: Relative CRLB and MSE of the ML estimator initialized using three methods as a function of SNR. Parameter values 10, 50, 100 are

shown in blue, red, and green, respectively.
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(i) d ∈ {1, 2, 5, 10, 50, 100, 200, 500}
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(ii) N ∈ {1, 2, 5, 10, 50, 100, 200, 500}
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(iii) n ∈ {1, 2, 5, 10, 50, 100, 200, 500}

Fig. 4: Relative CRLB as a function of SNR.

4. NUMERICAL EVALUATION

In this section, we perform numerical experiments to verify the

CRLB against the MSE of an iterative implementation of the ML

estimator and to gain further insight into the expression for the

CRLB.

4.1. Verifying the CRLB

To verify the CRLB, we compare the CRLB to the MSE obtained

by applying the ML estimator. To that end we derived an iterative

implementation of the ML estimator. Due to space limitations, we

omit the lengthy derivation. The derivation follows the approach of

[9] for minimization of sum of convex and concave functions as we

have in (6). The ML update equations are given by

s(t+1) =
1

N

N
X

i=1

ni
X

j=1

wij(s
(t))xij , wij(s) =

esT
xij/σ2

Pni

k=1 esT
xik/σ2

.

Note that upon convergence the resulting equation is identical to the

equation obtained by differentiating the log-likelihood in (6) with

respect to s and setting to zero.

Consider the nominal setting of N = 50 sets with n = 20 d =
100-dimensional elements in each set for SNR ∈ {−20dB,−18dB,
. . . , 20dB}. We vary one parameter (d, n, and N ) at a time in

{10, 50, 100} to evaluate the MSE of the ML estimator and the

CRLB as a function of SNR. For each combination of parameters

({N, n, d, SNR}), we generate 100 independent Monte-Carlo (MC)

realizations based on the model. For each realization, we apply the

iterative implementation of the ML estimator initialized (i) at ran-

dom with multiple restarts, (ii) by averaging over the largest norm

element from each set and (iii) at the true value of s. Using the

100 MC runs, we estimate the MSE by averaging the squared esti-

mation error. In Fig. 3, we present the CRLB as a function of the

SNR along with the MSE of the iterative implementation of the ML

estimator. We observe that for SNR ≥ 0dB the MSE of the ML esti-

mator agrees with the formula of the CRLB while for SNR < 0dB,

the MSE of the ML deviates from the CRLB. The random initializa-

tion and average max energy template methods are outperformed by

initializing at the true s. This is expected since for low SNR the ML

estimator is no longer unbiased, however, the method of initializing

with the true s biases the ML estimator favorably.

4.2. CRLB analysis

Next, we focus on the evaluation of the relative CRLB for the

problem (14). We evaluate the performance bound as a func-

tion of SNR ∈ {−20dB,−18dB, . . . , 20dB} for three different

settings of the parameters: (i) N = 50, n = 20, and d ∈
{1, 2, 5, 10, 20, 50, 100, 200, 500}; (ii) N = 50, d = 100, and

n ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}; and (iii) n = 20, d = 100,

and N ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. We present the rela-

tive CRLB for settings (i), (ii), and (iii) in Fig. 4. we observe that an

increase in SNR, element dimension d, number of sets observed N ,

or a decrease the number of elements in each set n yields a decrease

in the relative CRLB. We also notice that it is possible to achieve

an under −10dB relative CRLB, for fairly low values of SNR by

either increasing the dimension d or the number of sets N . This

suggests that while an increase in the number of elements in each set

(i.e., larger haystacks) degrades the performance, using more sets

(i.e., increasing N ) allows us to compensate for this performance

degradation.

5. CONCLUSION

We presented a problem setting in which an unknown element

present in multiple sets is sought after. We presented a statistical

model in which the element of interest is corrupted by Gaussian

noise and is placed among noisy elements. The study of CRLB for

the problem revealed that the relative mean squared error associated

with the estimation of the unknown element of interest depends on

the signal-to-noise ratio, element dimension, number of elements per

set, and the number of sets. When the SNR is large, the CRLB ap-

proaches the single element per set case CRLB. For a medium SNR,

a trade-off can be obtained: to achieve the same relative CRLB, the

difficulty of determining the position of the element in a set can

be offset by including more sets. Our current work aims to further

the application of the model derived in this paper towards efficient
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estimation algorithms in terms of both computational complexity

and accuracy.

A. APPENDIX: SINGLE SET FIM

We derive the expression for FIM1 = E[ log f(X1|s)
ds

log f(X1|s)
ds

T
].

The log-likelihood of s given X1 = [x11, . . . ,x1n1
] is obtained by

setting N = 1 in (6). To simplify the derivation of of FIM1, we

omit the dependence on i and write x1j simply as xj and n1 as n.

Consequently, we rewrite log f(X1|s) as

log f(X1|s) = K − ‖s‖2

2σ2
+ log(

n
X

j=1

e
sT

xj

σ2 ). (15)

The derivative of the log-likelihood log f(X1|s) wrt to s is given by:

log f(X1|s)
ds

=
1

σ2

n
X

j=1

wj(xj − s), where (16)

wj = e
sT

xj

σ2 /(
n

X

j=1

e
sT

xj

σ2 ) (17)

are sum-to-one non-negative weights that depend on (X1, s). Due

to symmetry in the position of s, the distribution of
log f(X1|s)

ds
is

invariant of J and hence

FIM1 = E[
log f(X1|s)

ds

log f(X1|s)
ds

T

|J = 1]. (18)

Since we proceed with the calculation of FIM1 under the assumption

that J = 1, we assume x1 ∼ N (s, σ2I) and xj ∼ N (0, σ2I) for

j = 2, . . . , n.

Due to the dependencies between the wj’s and xj’s (see (17)),

the computation of the FIM is non-trivial. To simplify the depen-

dencies, we consider a change of coordinates. First, we introduce

the d × n matrix Z whose entries are iid zero mean unit variance

Gaussian random variables, Zlk ∼ N (0, 1). The jth column of Z is

given by zj = [Z1j , Z2j , . . . , Zdj ]
T . Then, we express xj in terms

of Z as:

xj = sδj1 + σUzj (19)

where U = [ s
‖s‖ , u2, . . . , ud] is a unitary matrix and δab is the delta

function, which satisfies δab = 1 if a = b and 0 otherwise. Note that

with the exception of the first column of matrix U all other columns

can be chosen arbitrarily while maintaining the orthonormality. To

express the wi’s in terms of Z, we substitute
sT

xj

σ2 = ρδj1 +
√

ρZ1j

into (17) and express wj in terms of Z as

wj =
eρδj1+

√
ρZ1j

Pn
l=1 eρδl1+

√
ρZ1l

. (20)

Note that for all j = 1, 2, . . . , n, wj depends only on Z11, . . . , Z1n

and is independent of Zl1, . . . , Zln for all l = 2, . . . , n. Next, we

express the score,
d log f(X1|s)

ds
, in the new coordinates. Since the

score depends on (xj − s), we compute its new coordinates using

(19):

UT (xj − s) = ‖s‖e1δj1 + σzj − ‖s‖e1 (21)

where et denotes the canonical vector in which the tth element is

one and all other elements are zero. Using the variable substitution

in (21), we can re-write FIM1 as

FIM1 =
1

σ2
UMUT , where (22)

M =

n
X

j1=1

n
X

j2=1

E
ˆ

wj1wj2(
√

ρe1(δj11 − 1) + zj1) ·

(
√

ρe1(δj21 − 1) + zj2)
T ˜

. (23)

We proceed with the calculation of the entries of matrix M . The kl
term of the matrix M is given by

Mkl =
n

X

j1=1

n
X

j2=1

E[wj1wj2(
√

ρδk1(δj11 − 1) + Zkj1) ·

(
√

ρδl1(δj21 − 1) + Zlj2)]. (24)

If k = l, we can simplify Mkl as

Mkl = E
h

`

n
X

j=1

wj(
√

ρδk1(δj1 − 1) + Zkj)
´2

i

. (25)

For the case of k = l = 1, we have δl1 = δk1 = 1. Hence the

argument of the square in (25) is
Pn

j=1 wj(
√

ρ(δj1 − 1) + Z1j) =

−√
ρ

Pn
j=2 wj +

Pn
j=1 wjZ1j = −√

ρ(1 − w1) +
Pn

j=1 wjZ1j .

Substituting
Pn

j=1 wj(
√

ρ(δj1 − 1) + Z1j) = −√
ρ(1 − w1) +

Pn
j=1 wjZ1j into (25) yields

M11 = E[(
√

ρ(1 − w1) −
n

X

j=1

wjZ1j)
2]. (26)

We continue with the evaluation of Mkl terms for which k =
2, . . . , n and l = 1. Substituting δk1 = 0 into (24), we simplify

Mkl as

Mk1 =
n

X

j1=1

n
X

j2=1

E[wj1wj2Zkj1(
√

ρ(δj21 − 1) + Z1j2)]

=
n

X

j1=1

n
X

j2=1

E[wj1wj2(
√

ρ(δj21 − 1) + Z1j2)]E[Zkj1 ]

= 0, (27)

where the second equality holds due to the independence between

Zkj for k = 2, . . . , n and j = 1, . . . , n and (Z1j , wj) for j =
1, . . . , n and the third equality hold since all Zkj are zero mean.

By symmetry M1k = Mk1 = 0. Continue with k, l = 2, . . . , n.

Recognizing that δk1 = δl1 = 0, we simplify Mkl as

Mkl =

n
X

j1=1

n
X

j2=1

E[wj1wj2Zkj1Zlj2 ] =

n
X

j=1

E[w2
j ]δkl (28)

since E[wj1wj2Zkj1Zlj2 ] = E[wj1wj2 ]E[Zkj1Zlj2 ] = E[wj1wj2 ]·
δklδj1j2 . Note that Mkk =

Pn
j=1 E[w2

j ] for k = 2, . . . , n and

Mkl = 0 for k 6= l. The matrix M is a diagonal matrix and is given

by M = diag([M11, M22, . . . , M22]). We can write M as

M = (M11 − M22)e1e
T
1 + M22I.

Multiplying on the left with U and on the right with UT and dividing

by σ2, we obtain FIM1 as

1

σ2
UMUT =

1

σ2
((M11 − M22)

ssT

‖s‖2
+ M22I).
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