

Clustering Based Online Learning in Recommender Systems: A Bandit Approach

Linqi Song, Cem Tekin, Mihaela van der Schaar

Electrical Engineering Department, UCLA

Email: songlinqi@ucla.edu, cmtkn@ucla.edu, mihaela@ee.ucla.edu

ABSTRACT
A big challenge for the design and implementation of large-scale
online services is determining what items to recommend to their
users. For instance, Netflix makes movie recommendations;
Amazon makes product recommendations; and Yahoo! makes
webpage recommendations. In these systems, items are
recommended based on the characteristics and circumstances of
the users, which are provided to the recommender as contexts (e.g.,
search history, time, and location). The task of building an efficient
recommender system is challenging due to the fact that both the
item space and the context space are very large. Existing works
either focus on a large item space without contexts, large context
space with small number of items, or they jointly consider the
space of items and contexts together to solve the online
recommendation problem. In contrast, we develop an algorithm
that does exploration and exploitation in the context space and the
item space separately, and develop an algorithm that combines
clustering of the items with information aggregation in the context
space. Basically, given a user’s context, our algorithm aggregates
its past history over a ball centered on the user’s context, whose
radius decreases at a rate that allows sufficiently accurate estimates
of the payoffs such that the recommended payoffs converge to the
true (unknown) payoffs. Theoretical results show that our
algorithm can achieve a sublinear learning regret in time, namely
the payoff difference of the oracle optimal benchmark, where the
preferences of users on certain items in certain context are known,
and our algorithm, where the information is incomplete. Numerical
results show that our algorithm significantly outperforms (over
48%) the existing algorithms in terms of regret.

Index terms-- Recommender systems; online learning;
clustering algorithms; multi-armed bandit.

1. INTRODUCTION

With the rapid growth of online web services, a huge number of
items become available to users [1], such as movies at Netflix,
products at Amazon, webpages at Yahoo!, and advertisements at
Google. Most widely used recommender systems, such as video and
audio recommender systems [5][8], have very large item sets. The
goal of such recommender systems is to assist its users in finding
their preferred items from the large set of items [1][2].
 The preference of a user on a particular item is learned through
a random payoff, which is received by the recommender system
based on the response of the user to the recommendation. For
example, in the movie recommendations, the payoffs are the rating
scores (e.g., 1 to 5) on movies rated by the users; in the webpage
recommendations, the payoffs are measured by the users’ click

behaviors (i.e., 1 for a click and 0 for no clicks).
Two popular recommendation approaches are filtering-based

and machine learning-based techniques [3]. Filtering-based
approaches, such as collaborative filtering [4][5], content-based
filtering [2][6] and hybrid approaches [7][8], employ the historical
data of users’ feedback to calculate the future payoffs of users based
on some prediction functions.

Machine learning-based methods, such as Multi-Armed Bandit
(MAB) algorithms [20]-[23] and Markov Decision Processes
(MDPs) algorithms [24], use machine learning techniques to solve
the recommendation problem. MDP-based learning approaches
model a fraction of the historical data of a user as the state and the
possible items as the action set, and try to maximize the long-term
total payoff [24]. However, a key disadvantage of such MDP
approaches is that the state set will grow fast as the number of items
increases, thereby resulting in very slow convergence rates. MAB-
based approaches [9]-[14], such as - greedy [14] and UCB1 [12],
provide not only asymptotic convergence to the optimum, but also a
bound on the rate of convergence for any time step. They do this by
balancing exploration and exploitation, where exploration means
recommending different sets of items to learn about their expected
payoffs, and exploitation means recommending the best set of items
based on the observations made so far.

However, in many applications, such as movie
recommendations, it may not be sufficient to only consider the user-
item space. It is also important to incorporate context into the
process in order to improve the quality of the recommendations to
users based on specific circumstances [15]-[17]. Such context-
aware recommender systems have been recently studied [15]-[23].
For example, in movie recommendations [17], it is also important to
consider the time when a movie should be seen (e.g., weekdays,
weekends or special days such as Valentine’s Day), the location in
which the movie should be seen, (e.g., home or movie theater), the
companion with which the movie is seen (friends, family, alone, co-
workers, etc.). Thus, incorporating contexts extends the user-item
space used traditionally for recommender systems to the user-item-
context space, in order to evaluate the payoffs of recommendations.
Moreover, if users have privacy concerns, the recommender system
cannot recognize a particular user when the user arrives. In this case,
the users’ features (cookies) can be considered as contexts. In
[20][21], the payoff functions are assumed to be linear in contexts,
and an algorithm named LinUCB is proposed to solve the news
article recommendation problem with contexts. However, the linear
payoff assumption is not always true in practice. In a more general
setting, it is assumed that the context space is a bounded metric
space with a Lipschitz condition, and recommendation algorithms
are proposed based on the context space partition. These works
[15]-[23], however, do not take into account the large item space,
which is a key challenge in practice.

Another strand of related works studies recommender systems
in which the item space is large [3][4]. MAB-based learning
algorithms for large item space have been considered in [25][26]. In
[26], the item space has been partitioned into finite number of
subspaces, and the learning is performed on the subspace level

 The material is based upon work funded by the US Air Force
Research Laboratory (AFRL). Any opinions, findings, and conclusions or
recommendations expressed in this article are those of the authors and do
not reflect the views of AFRL.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4561

instead of the item level. Alternatively, in [25], an item cluster tree
is considered, and tree search methods are performed to find the
optimal item. In contrast, we consider a finite but large item space,
based on which the learning is performed on the cluster level
instead of item level. Moreover, contexts are not considered in these
works [3][4][25][26].

Building contextual recommender systems with a large item
space has become challenging. In [27], the recommendation is
performed by merging the context space X and item space I into
a joint space X I , and by partitioning of the new space.
However, this work needs to know the Lipschitz constant in the
algorithm, which is difficult to implement in practice. Furthermore,
the merging of spaces greatly increases the space dimension (i.e.,
the dimension of X plus the dimension of I), resulting in a slow
convergence rate.

In this paper, we consider the design and implementation of
recommendation systems which consider the users’ contextual
information and have a large number of items. For this, we propose
a contextual bandit approach based on the item cluster tree. To the
best of our knowledge, our work is the first to solve the
recommendation problem using an item cluster tree based
contextual bandit approach. Firstly, different from [27], we
separately consider the context and item spaces. We model the
context space as a general continuous and bounded space, although
our results still hold for a finite context space. Since items can
always be categorized as a cluster tree for different online services,
we can use a general cluster tree structure to model the item space,
and form a set of clusters based on this structure. Secondly, our
algorithm selects item clusters based on past observations in a
dynamic subspace in the context space each time, in contrast to
existing works [22][23][25]-[27], where only the past observations
in static or semi-dynamic subspaces are used. Thirdly, our
algorithm does not need to know the Lipschitz constant, which is
only used to evaluate the performance of the algorithm. A detailed
comparison with the existing works is presented in Table I.

In our model, the leaves of the tree represent the items, and the
nodes of the tree represent the clusters (a leaf can also be seen as a
cluster with only one item). The metric (distance) to evaluate the
similarity between items is defined based on this cluster tree. In the
proposed algorithm, we model the possible selections (referred to as
the arms) of the MAB model as a layer of nodes (clusters) at depth-
d of the tree, instead of each single item, which reduces the number
of possible selections and hence, increases the learning speed.

The proposed algorithm works in discrete time periods and at
each time period it alternates between an exploration phase and an
exploitation phase depending on the past selections. Each time, a
user with a specific context arrives, and the recommender system
aggregates information over a ball (referred to as the active ball)
centered on the current context that contains a sublinear number of
past arrivals. Then, if the times that a cluster is selected in the active
ball up to now is below a certain threshold, the current period will
be an exploration phase and that cluster will be selected; otherwise,

the period will be an exploitation phase and the current “best”
cluster (in terms of sum average payoffs) will be selected. Then, a
randomly selected item in the selected cluster is recommended to
the user. When the selection is made, a random payoff is observed
by the recommender system. The goal of learning is to minimize the
difference (referred to as the regret) between the optimal expected
total payoffs that can be achieved if all expected payoffs are known
and the expected total payoffs gained through our learning
algorithm, in which the information is incomplete.

2. SYSTEM MODEL

2.1. Recommender System

A recommender system consists of a set of items, denoted by

{1 2 , }= , , ILI . In the item space, the similarity distance is

defined as a metric :
I

s ¡I I , which is based on the features
of the items and known to the recommender system. A smaller

(,)
I

s i i implies that two items i and i are more similar. We

denote the context set by [0,1] CdX . Each context Xx is a

C
d dimensional vector, i.e.,

1 2
, ,(),

Cd
x x x Lx and each

component of x is a real number in [0,1] . We denote the metric in

context space by :
C

s ¡X X . A smaller (,)
C

s x x implies

that the two contexts x and x are more similar.
The recommender system operates in discrete time slots
1,2,3t L . The context arrival is independent identically

distributed (i.i.d.), and each time it is sampled from a fixed but
unknown distribution. We assume that the probability density ()f x
of x satisfies:

min max
() ,f f f Xx x . (1)

This bounded probability density indicates that there will be a
positive arrival probability for a user with any context.
 For a user with context Xx , the payoff of choosing item i
is denoted by

,
[0,1]

i
r x , which is a random variable drawn from a

fixed but unknown distribution and its average payoff is denoted by

,i
 x . Only the payoffs of the recommended items can be observed
by the recommender system and can be used for further
recommendations.
 Note that we will add the subscript t to context x when
referring to the learning process over each period. The sampled tx
can be observed by the recommender system when the user arrives.
The components of context and payoffs in [0, 1], are just for
notational simplicity and in general they can be in any bounded
interval. In the Euclidean space X , the metric (,)

C
s x x can be any

Euclidean norm.
 In the context space, an item has similar payoffs when similar
contexts arrive; we formalize this in terms of a Lipschitz condition
as follows.

Assumption 1 (Lipschitz condition for contexts): Given two
contexts , Xx x , we have the following assumption:

, ,
| | (,)

i i C C
L s

 x x x x , for any item i .

 In the item space, the expected payoffs of similar items are
similar, given the same context. We formalize this as follows.

Table I Comparison between the Proposed and Existing Solutions
 Context Dependent

items
Item

cluster tree
Context
subspace

Linear
payoff

[13] No No No No Yes
[20][21] Yes No No No Yes
[22][23] Yes No No Partition No

[25] No Yes Yes No No
[26] No Yes Yes No No
[27] Yes Yes No Partition No
Our
work

Yes Yes Yes Dynamic
subspace

No

4562

Assumption 2 (Lipschitz condition for items): Given two
items ,i i I , we have the following assumption:

, ,
| | (,)

i i I
L s i i

 x x , for any context x .

2.2. Item cluster tree

Items in the system are often categorized as a cluster tree [27].
Recall that in a cluster tree, each leaf represents an item and each
node represents a cluster.
 We define all the nodes at depth 0d as layer d and the
node/cluster in layer d is denoted by

,d l
C , where {1,2, }

d
l L L

and
d

L is the number of nodes at depth d. The diameter of a cluster

,d lC
D is defined as the maximal distance of the items in that cluster,

namely,
, ,,

max { (,)}
d l d lC i i C

D s i i . In a cluster tree structure, a

general tree metric can be defined as the mapping from depth of the
node in the tree to the diameter bound of the cluster, namely,

:
T

s ¥ ¡ . Thus, ()
T

s d denotes the diameter bound of the

clusters at depth d, namely,
,

()
d lC T

D s d for any cluster l at depth

d. For a tree metric, the diameter bound of cluster at depth d is not
smaller than that at depth d+1, i.e., () (1)

T T
s d s d .

 There are several examples of the tree metric. Similar to [27],
we use the exponential tree metric: () d

T
s d , where (0,1) is

the constant base for depth d.
 Note that the advantage of applying this item cluster tree is to
categorize items based on their similar features. For example, in
some applications, the similarity between two items is hard to
define, but the categories which the items belong to are easy to
recognize. In this case, the tree metric is the appropriate evaluation
of similarity in item space. Moreover, given the tree metric, an
arbitrary metric can be formed into a cluster tree, which fulfills the
tree metric [28]. Thus, for an item cluster tree, the Lipschitz
condition in item space of Assumption 2 can be restated as
Assumption 3.

Assumption 3 (Lipschitz condition for item cluster tree): For
two items in the same cluster at depth d, namely,

,
,

d l
i i C , we

have the following assumption:
, ,

| | ()
Ti i I

L s d

 x x , for any
context x .

Note that the cluster tree can be partitioned by several nodes,
which contain all the items and no two nodes contain the same item.
Thus any item is included in one of the clusters. Moreover, there is
a tradeoff between the number of clusters we need to explore and
the cluster depth. Choosing clusters with larger depth will make
more specific recommendations to the users, but it will also require
learning more about specific characteristics of items and users.

2.3. Problem Formulation

In the contextual MAB based recommendation problem, the
cluster-based partition K of the item space (i.e., a disjoint set of

| |K K clusters that cover the whole item space) is given to the
recommender system. Each time, a user with context x arrives, a
cluster k K is selected; an item i in that cluster is randomly
recommended; and the payoff

,t i
r r x is observed. Given the

number of items in cluster k ,
k

M , the average payoff of cluster k

equals
, ,

/
k i x ki k

M

x . In order to make a

recommendation, the algorithm should choose a cluster and an
item from the chosen cluster. Therefore the algorithm needs to
keep track of estimated performance of each cluster.

The recommender system selects the cluster at time t based on
the current context and the history, which is a collection of past
contexts, cluster selections, and payoff observations. The history is
written as

1 1 1 2 2 2 1 1 1
{(, ,),(, ,), ,(, ,)}

t t tt
h k r k r k r Lx x x for

1t and
1

h for 1t . We denote the history set of each
period by H , then the algorithm is defined as a mapping from
the current context and history to the recommendation action in
time period t, namely

1
: t

t

 X H K∪ . We denote the set of
all history-based algorithms by .

Thus, given the cluster set, the learning goal is to find an
algorithm that maximizes the total average payoff, denoted by

()U T (i.e.,
(,),1

() []
t t t

T

ht
U T

 x x), for any T:

(,),1

max () max []
t t t

T

ht
U T

 x x (2)

If all the information is known, the best choice is to choose
*

,
() argmax [],

tt t k k
h K xx . However, in practice, the average

payoffs
, tk

 x and the distribution of context
t

x are not known. To

measure the difference between * ()U T

 and ()U T , we
alternatively define the regret of learning algorithm as
 *() () ()R T U T U T

 . (3)

 Therefore, the design goal of the learning algorithm is to
minimize the regret ()R T .

3. PROPOSED RECOMMENDATION ALGORITHM

In this section, we propose the One-Layer Clustering
Recommendation (OLCR) algorithm, and prove that the regret of
this algorithm is sublinear in T.
 We first present an intuitive illustration of the algorithm in Fig.
1 and 2. Due to the huge number of items in the system, it is
inefficient to compare against all the items in the system to select
an appropriate one, since the learning speed will be very slow. One
way to select the cluster set K is to choose clusters in the same
layer, namely nodes with the same depth in the cluster tree. We
formalize this selection in our OLCR algorithm, shown in Table II.
Each time, the algorithm alternates between two phases: the
exploration phase and the exploitation phase, depending on the
history and current context. We denote by (,)B x the ball in

context space with center x and radius . We consider the t

1

(0 1) closest past arrivals in context space and use a ball

(,)
t t

B x to denote this subspace in the context space, as shown in

Fig. 1. Let
, (,)t tk B x

N denote the number of past selections of

cluster k within the ball and
, (,)t tk B x

r denote the sum average

payoffs of cluster k within the ball. The algorithm checks if there is
any cluster whose past number of selections within the ball does

1 y denotes the maximal positive integer number that is smaller than or equal to y .

4563

not exceed the threshold lnAt t (0 , 0A), and if
so it explores that cluster by selecting it. If all the clusters are
explored enough, i.e., past number of selections within the ball
exceeds the threshold, it selects (exploits) the current best cluster
(by comparing the sum-average of past payoffs of each cluster
within the ball. When the selection is made, a random payoff

, tk x
r is observed by the recommender system.

The performance of the OLCR algorithm, in terms of regret up
to time T, is given in Theorem 1.

Theorem 1: The regret ()
OLCR

R T up to time T of the OLCR
algorithm is bounded by

2
1 ()

(1 /2
1

/

0

1)

() ln (1)
3

22

(1 / 2) 1

c c

OLCR

c

d d

c

R T CT T K

LC dTT
dA

 , (4)

where 0C is a constant, such that
0

(1)/[] Cd

t
E C t , and

max1 2
C Cd dC KA f c C is a constant, such that

Cd
c is the

covering constant 2 , and / / (/)2 2 1C

C

d
d CC d , () is the

Gamma function.
Proof: The proof of Theorem 1 is given in [29].

 Note that the regret is sublinear in T, resulting in a sublinearly
vanishing time average performance loss, which is a stronger result
than the asymptotic convergence.

4. NUMERICAL RESULTS

In this section, we compare the proposed OLCR algorithm with the
traditional context-free UCB1 algorithm [12], the context-aware
collaborative filtering (CACF) algorithm [18], and the hybrid- ε -

2 We use a set of balls with any radius ρ to cover a Cd dimensional space X . If
the distance between any two centers of the balls is greater than ρ , then the covering
constant

Cdc is the constant, such that the maximum number of balls in the set is not

greater than C

C

d
dc ρ − .

greedy algorithm [19]. In the simulation, we consider a binary item
cluster tree, whose metric fulfills the exponential tree metric.
 Simulation results are shown in Fig. 3 and Table III. We
compare the average regret per period (() /R t t for algorithm π)
of algorithms in Fig. 3, and show the comparison of regrets up to
T=100, 000 in Table III. We can see that the OLCR algorithm
significantly outperforms the context-free UCB1 algorithm, the
CACF algorithm and the hybrid- ε -greedy algorithm, with 81%,
59% and 48% reduction of regret for K=64, and 82%, 78% and 69%
reduction of regret for K=16, respectively. We can also see that the
convergence rate of the OLCR algorithm increases when the
number of clusters decreases from K=64 to K=16.

5. CONCLUSIONS

In this paper, we propose a contextual MAB based clustering
algorithm to design and deploy recommender systems, in which
both the contexts and the large item space are considered. To
improve the learning speed, we consider partitioning the item
cluster tree into a set of clusters. The algorithm alternates between
the exploration and exploitation phases and aggregates the
contextual information from a sublinear number of past arrived
contexts. Theoretical results show that the algorithm can achieve a
sublinear regret in time T, which is a stronger result than
asymptotic convergence. Simulations show that our algorithm
significantly outperforms the existing state-of-the-art algorithms by
over 50%, in terms of regret.

TABLE II. One-Layer Clustering Recommendation Algorithm

1: Input: clusters {1,2, }K LK , periods T.
2: for t=1:T do
3: Observe the context tx . Find a ball (,)t tB x ρ with minimum radius

tρ , which contains t
 of past arrived contexts.

4: if
(,,)

, ln
t tk B x

k st N At t

 then (Exploration Phase)

5: select arm k, and randomly recommend an item in arm k.
6: else (Exploitation Phase)
7: select

,, ()
arg max []

t tk k B x
k r K , and randomly recommend an

item in cluster k.
8: end if
9: Receive the reward:

t
r .

10: end for

Table III Comparison of Regrets up to T=100, 000
(K=64) / (K=16) UCB1 CACF Hybrid- ε OLCR

Regret 8387 / 7422 3944 / 6134 3129 / 4385 1632 / 1362
Performance gain

over others
81% / 82% 59% / 78% 48% / 69% -

Fig. 2. Recommender system based on OLCR algorithm

 (a) K=64 (b) K=16
Fig. 3. The regret performance comparison

1
t 2t

3
t

1
t

1 2
 t to t

2 3
 t to t

1 1
(,)

t t
B x

2 2
(,)

t t
B x

3 3
(,)

t t
B x

Fig. 1. Dynamic subspace selection in the context space

4564

6. REFERENCES

[1] P. Resnick and H. R. Varian, "Recommender systems," ACM
Comm., vol. 40, no. 3, pp. 56-58, 1997.

[2] M. Balabanovi and Y. Shoham, “Fab: content-based, collaborative
recommendation,” ACM Comm., vol. 40, pp. 66-72, 1997.

[3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, pp. 734-749,
2005.

[4] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in AI, vol 4, 2009.

[5] F. Sanchez, M. Alduan, F. Alvarez, J. Menendez, and O. Baez,
“Recommender system for sport videos based on user audiovisual
consumption,” IEEE Trans. Multimedia, vol. 14, no. 6, pp. 1546-
1557, 2012.

[6] M. J. Pazzani and D. Billsus, “Content-based recommendation
systems,” in The Adaptive Web, LNCS, vol 4321, pp. 325-341.
Springer Berlin Heidelberg, 2007.

[7] R. Burke, “Hybrid recommender systems: Survey and
experiments,” User modeling and user-adapted interaction, vol 12,
no. 4, pp. 331-370, 2002.

[8] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “An
efficient hybrid music recommender system using an incrementally
trainable probabilistic generative model,” IEEE Trans. Audio, Speech,
Language Process., vol. 16, no. 2, pp. 435-447, 2008.

[9] H. Liu, K. Liu, and Q. Zhao, “Logarithmic weak regret of non-
Bayesian restless multi-armed bandit,” in IEEE ICASSP, pp. 1968-
1971, 2011.

[10] W. Dai, Y. Gai, B. Krishnamachari, and Q. Zhao, “The non-Bayesian
restless multi-armed bandit: A case of near-logarithmic regret,”
in IEEE ICASSP, pp. 2940-2943, 2011.

[11] K. Wang and L. Chen, “On optimality of myopic policy for restless
multi-armed bandit problem: an axiomatic approach,” IEEE Trans.
Signal Process., vol. 60, no. 1 pp. 300-309, 2012.

[12] P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time Analysis of the
Multi-armed Bandit Problem," Machine Learning, vol. 47, pp. 235-
256, 2002.

[13] Y. Deshpande and A. Montanari, “Linear bandits in high dimension
and recommendation systems,” in Proc. 50th Allerton Conference,
pp. 1750-1754, 2012.

[14] N. C.- Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge Univ. Press, 2006.

[15] G. Adomavicius and A. Tuzhilin, “Context-aware recommender
systems,” in Recommender Systems Handbook, Springer US, pp. 217-
253, 2011.

[16] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin,
“Incorporating contextual information in recommender systems using
a multidimensional approach,” ACM Trans. Inf. Syst., vol 23, no. 1,
pp. 103-145, 2005.

[17] A. Said, S. Berkovsky, E. W. De Luca, and J. Hermanns, “Challenge
on context-aware movie recommendation: CAMRa2011,” in Proc.
5th ACM Conf. on Recommender Syst., pp. 385-386, 2011.

[18] A. Chen, “Context-aware collaborative filtering system: Predicting
the user’s preference in the ubiquitous computing environment,”
in Location-and Context-Awareness, Springer Berlin Heidelberg, pp.
244-253, 2005.

[19] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski, “Hybrid-ε-
greedy for mobile context-aware recommender system,” Advances in
Knowledge Discovery and Data Mining, Springer Berlin Heidelberg,
pp. 468-479, 2012.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc.
19th WWW, Raleigh, North Carolina, USA, 2010.

[21] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits
with linear payoff functions,” in Int. Conf. AI Statistics, pp. 208-214,
2011.

[22] A. Slivkins, “Contextual Bandits with Similarity Information,” 24th
Annual COLT, 2011.

[23] T. Lu, D. Pal, and M. Pal, “Contextual multi-armed bandits,” ACM
AISTATE, 2010.

[24] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-Based
Recommender System,” ACM J. Machine Learning, vol. 6, pp. 1265-
1295, 2005.

[25] S. Pandey, D. Chakrabarti, and D. Agarwal, “Multi-armed bandit
problems with dependent arms,” in Proc. 24th ACM Int. Conf.
Machine learning, pp. 721-728, 2007.

[26] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in
metric spaces,” in Proc. 40th annual ACM symp. on Theory of
Comput., 2008.

[27] A. Slivkins, F. Radlinski, and S. Gollapudi, “Ranked bandits in metric
spaces: learning diverse rankings over large document collections,” J.
Machine Learning Research, vol. 14, pp.399-436, 2013.

[28] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup, “On
the approximability of numerical taxonomy (fitting distances by tree
metrics),” SIAM Journal on Computing, vol. 28, no. 3, pp. 1073-
1085, 1999.

[29] L. Song, C. Tekin, and M. van der Schaar, “Appendix,” Available:
medianetlab.ee.ucla.edu/~linqi/appendix_recommendation.pdf

4565

