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ABSTRACT 
A big challenge for the design and implementation of large-scale 
online services is determining what items to recommend to their 
users. For instance, Netflix makes movie recommendations; 
Amazon makes product recommendations; and Yahoo! makes 
webpage recommendations. In these systems, items are 
recommended based on the characteristics and circumstances of 
the users, which are provided to the recommender as contexts (e.g., 
search history, time, and location). The task of building an efficient 
recommender system is challenging due to the fact that both the 
item space and the context space are very large. Existing works 
either focus on a large item space without contexts, large context 
space with small number of items, or they jointly consider the 
space of items and contexts together to solve the online 
recommendation problem. In contrast, we develop an algorithm 
that does exploration and exploitation in the context space and the 
item space separately, and develop an algorithm that combines 
clustering of the items with information aggregation in the context 
space. Basically, given a user’s context, our algorithm aggregates 
its past history over a ball centered on the user’s context, whose 
radius decreases at a rate that allows sufficiently accurate estimates 
of the payoffs such that the recommended payoffs converge to the 
true (unknown) payoffs. Theoretical results show that our 
algorithm can achieve a sublinear learning regret in time, namely 
the payoff difference of the oracle optimal benchmark, where the 
preferences of users on certain items in certain context are known, 
and our algorithm, where the information is incomplete. Numerical 
results show that our algorithm significantly outperforms (over 
48%) the existing algorithms in terms of regret. 
 

Index terms-- Recommender systems; online learning; 
clustering algorithms; multi-armed bandit. 

1. INTRODUCTION 
 
With the rapid growth of online web services, a huge number of 
items become available to users [1], such as movies at Netflix, 
products at Amazon, webpages at Yahoo!, and advertisements at 
Google. Most widely used recommender systems, such as video and 
audio recommender systems [5][8], have very large item sets. The 
goal of such recommender systems is to assist its users in finding 
their preferred items from the large set of items [1][2]. 
 The preference of a user on a particular item is learned through 
a random payoff, which is received by the recommender system 
based on the response of the user to the recommendation. For 
example, in the movie recommendations, the payoffs are the rating 
scores (e.g., 1 to 5) on movies rated by the users; in the webpage 
recommendations, the payoffs are measured by the users’ click 

behaviors (i.e., 1 for a click and 0 for no clicks).  
Two popular recommendation approaches are filtering-based 

and machine learning-based techniques [3]. Filtering-based 
approaches, such as collaborative filtering [4][5], content-based 
filtering [2][6] and hybrid approaches [7][8], employ the historical 
data of users’ feedback to calculate the future payoffs of users based 
on some prediction functions.  

Machine learning-based methods, such as Multi-Armed Bandit 
(MAB) algorithms [20]-[23] and Markov Decision Processes 
(MDPs) algorithms [24], use machine learning techniques to solve 
the recommendation problem. MDP-based learning approaches 
model a fraction of the historical data of a user as the state and the 
possible items as the action set, and try to maximize the long-term 
total payoff [24]. However, a key disadvantage of such MDP 
approaches is that the state set will grow fast as the number of items 
increases, thereby resulting in very slow convergence rates. MAB-
based approaches [9]-[14], such as  - greedy [14] and UCB1 [12], 
provide not only asymptotic convergence to the optimum, but also a 
bound on the rate of convergence for any time step. They do this by 
balancing exploration and exploitation, where exploration means 
recommending different sets of items to learn about their expected 
payoffs, and exploitation means recommending the best set of items 
based on the observations made so far.  

However, in many applications, such as movie 
recommendations, it may not be sufficient to only consider the user-
item space. It is also important to incorporate context into the 
process in order to improve the quality of the recommendations to 
users based on specific circumstances [15]-[17]. Such context-
aware recommender systems have been recently studied [15]-[23]. 
For example, in movie recommendations [17], it is also important to 
consider the time when a movie should be seen (e.g., weekdays, 
weekends or special days such as Valentine’s Day), the location in 
which the movie should be seen, (e.g., home or movie theater), the 
companion with which the movie is seen (friends, family, alone, co-
workers, etc.). Thus, incorporating contexts extends the user-item 
space used traditionally for recommender systems to the user-item-
context space, in order to evaluate the payoffs of recommendations. 
Moreover, if users have privacy concerns, the recommender system 
cannot recognize a particular user when the user arrives. In this case, 
the users’ features (cookies) can be considered as contexts. In 
[20][21], the payoff functions are assumed to be linear in contexts, 
and an algorithm named LinUCB is proposed to solve the news 
article recommendation problem with contexts. However, the linear 
payoff assumption is not always true in practice. In a more general 
setting, it is assumed that the context space is a bounded metric 
space with a Lipschitz condition, and recommendation algorithms 
are proposed based on the context space partition. These works 
[15]-[23], however, do not take into account the large item space, 
which is a key challenge in practice. 

Another strand of related works studies recommender systems 
in which the item space is large [3][4]. MAB-based learning 
algorithms for large item space have been considered in [25][26]. In 
[26], the item space has been partitioned into finite number of 
subspaces, and the learning is performed on the subspace level 
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instead of the item level. Alternatively, in [25], an item cluster tree 
is considered, and tree search methods are performed to find the 
optimal item. In contrast, we consider a finite but large item space, 
based on which the learning is performed on the cluster level 
instead of item level. Moreover, contexts are not considered in these 
works [3][4][25][26].  

Building contextual recommender systems with a large item 
space has become challenging. In [27], the recommendation is 
performed by merging the context space X  and item space I  into 
a joint space X I , and by partitioning of the new space.  
However, this work needs to know the Lipschitz constant in the 
algorithm, which is difficult to implement in practice. Furthermore, 
the merging of spaces greatly increases the space dimension (i.e., 
the dimension of X  plus the dimension of I ), resulting in a slow 
convergence rate.  

In this paper, we consider the design and implementation of 
recommendation systems which consider the users’ contextual 
information and have a large number of items. For this, we propose 
a contextual bandit approach based on the item cluster tree. To the 
best of our knowledge, our work is the first to solve the 
recommendation problem using an item cluster tree based 
contextual bandit approach. Firstly, different from [27], we 
separately consider the context and item spaces. We model the 
context space as a general continuous and bounded space, although 
our results still hold for a finite context space. Since items can 
always be categorized as a cluster tree for different online services, 
we can use a general cluster tree structure to model the item space, 
and form a set of clusters based on this structure. Secondly, our 
algorithm selects item clusters based on past observations in a 
dynamic subspace in the context space each time, in contrast to 
existing works [22][23][25]-[27], where only the past observations 
in static or semi-dynamic subspaces are used. Thirdly, our 
algorithm does not need to know the Lipschitz constant, which is 
only used to evaluate the performance of the algorithm. A detailed 
comparison with the existing works is presented in Table I. 

In our model, the leaves of the tree represent the items, and the 
nodes of the tree represent the clusters (a leaf can also be seen as a 
cluster with only one item). The metric (distance) to evaluate the 
similarity between items is defined based on this cluster tree. In the 
proposed algorithm, we model the possible selections (referred to as 
the arms) of the MAB model as a layer of nodes (clusters) at depth-
d of the tree, instead of each single item, which reduces the number 
of possible selections and hence, increases the learning speed.  

The proposed algorithm works in discrete time periods and at 
each time period it alternates between an exploration phase and an 
exploitation phase depending on the past selections. Each time, a 
user with a specific context arrives, and the recommender system 
aggregates information over a ball (referred to as the active ball) 
centered on the current context that contains a sublinear number of 
past arrivals. Then, if the times that a cluster is selected in the active 
ball up to now is below a certain threshold, the current period will 
be an exploration phase and that cluster will be selected; otherwise, 

the period will be an exploitation phase and the current “best” 
cluster (in terms of sum average payoffs) will be selected. Then, a 
randomly selected item in the selected cluster is recommended to 
the user. When the selection is made, a random payoff is observed 
by the recommender system. The goal of learning is to minimize the 
difference (referred to as the regret) between the optimal expected 
total payoffs that can be achieved if all expected payoffs are known 
and the expected total payoffs gained through our learning 
algorithm, in which the information is incomplete. 

 
2. SYSTEM MODEL 

 
2.1. Recommender System 
 
A recommender system consists of a set of items, denoted by 

{1 2 , }= , , ILI . In the item space, the similarity distance is 

defined as a metric :
I

s   ¡I I , which is based on the features 
of the items and known to the recommender system. A smaller 

( , )
I

s i i  implies that two items i  and i  are more similar. We 

denote the context set by [0,1] CdX . Each context  Xx  is a 

C
d  dimensional vector, i.e., 

1 2
, ,( ),

Cd
x x x Lx  and each 

component of x  is a real number in [0,1] . We denote the metric in 

context space by :
C

s   ¡X X . A smaller ( , )
C

s x x  implies 

that the two contexts x  and x  are more similar. 
The recommender system operates in discrete time slots  
1,2,3t  L . The context arrival is independent identically 

distributed (i.i.d.), and each time it is sampled from a fixed but 
unknown distribution. We assume that the probability density ( )f x  
of x  satisfies: 
 

min max
( ) ,f f f    Xx x  . (1) 

This bounded probability density indicates that there will be a 
positive arrival probability for a user with any context. 
 For a user with context  Xx , the payoff of choosing item i  
is denoted by 

,
[0,1]

i
r x , which is a random variable drawn from a 

fixed but unknown distribution and its average payoff is denoted by 

,i
 x . Only the payoffs of the recommended items can be observed 
by the recommender system and can be used for further 
recommendations.  
 Note that we will add the subscript t  to context x  when 
referring to the learning process over each period. The sampled tx  
can be observed by the recommender system when the user arrives. 
The components of context and payoffs in [0, 1], are just for 
notational simplicity and in general they can be in any bounded 
interval. In the Euclidean space X , the metric ( , )

C
s x x  can be any 

Euclidean norm. 
 In the context space, an item has similar payoffs when similar 
contexts arrive; we formalize this in terms of a Lipschitz condition 
as follows. 

Assumption 1 (Lipschitz condition for contexts): Given two 
contexts ,   Xx x , we have the following assumption: 

, ,
| | ( , )

i i C C
L s 


 x x x x , for any item i . 

 In the item space, the expected payoffs of similar items are 
similar, given the same context. We formalize this as follows. 

Table I Comparison between the Proposed and Existing Solutions 
 Context Dependent 

items 
Item  

cluster tree 
Context 
subspace  

Linear 
payoff 

[13] No No No No Yes 
[20][21] Yes No No No Yes 
[22][23] Yes No No Partition No 

[25]  No Yes Yes No No 
[26] No Yes Yes No No 
[27] Yes Yes No Partition No 
Our 
work 

Yes Yes Yes Dynamic 
subspace 

No 
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Assumption 2 (Lipschitz condition for items): Given two 
items ,i i  I , we have the following assumption: 

, ,
| | ( , )

i i I
L s i i 


 x x , for any context x . 

 
2.2. Item cluster tree 
 
Items in the system are often categorized as a cluster tree [27]. 
Recall that in a cluster tree, each leaf represents an item and each 
node represents a cluster.  
 We define all the nodes at depth 0d   as layer d and the 
node/cluster in layer d is denoted by 

,d l
C , where {1,2, }

d
l L L  

and 
d

L  is the number of nodes at depth d. The diameter of a cluster 

,d lC
D  is defined as the maximal distance of the items in that cluster, 

namely, 
, ,,

max { ( , )}
d l d lC i i C

D s i i  . In a cluster tree structure, a 

general tree metric can be defined as the mapping from depth of the 
node in the tree to the diameter bound of the cluster, namely, 

:
T

s ¥ ¡ . Thus, ( )
T

s d  denotes the diameter bound of the 

clusters at depth d, namely, 
,

( )
d lC T

D s d  for any cluster l  at depth 

d. For a tree metric, the diameter bound of cluster at depth d is not 
smaller than that at depth d+1, i.e., ( ) ( 1)

T T
s d s d  .  

  There are several examples of the tree metric. Similar to [27], 
we use the exponential tree metric: ( ) d

T
s d  , where (0,1)   is 

the constant base for depth d.  
 Note that the advantage of applying this item cluster tree is to 
categorize items based on their similar features. For example, in 
some applications, the similarity between two items is hard to 
define, but the categories which the items belong to are easy to 
recognize. In this case, the tree metric is the appropriate evaluation 
of similarity in item space. Moreover, given the tree metric, an 
arbitrary metric can be formed into a cluster tree, which fulfills the 
tree metric [28]. Thus, for an item cluster tree, the Lipschitz 
condition in item space of Assumption 2 can be restated as 
Assumption 3. 

Assumption 3 (Lipschitz condition for item cluster tree): For 
two items in the same cluster at depth d, namely, 

,
,

d l
i i C  , we 

have the following assumption: 
, ,

| | ( )
Ti i I

L s d 


 x x , for any 
context x . 

Note that the cluster tree can be partitioned by several nodes, 
which contain all the items and no two nodes contain the same item. 
Thus any item is included in one of the clusters. Moreover, there is 
a tradeoff between the number of clusters we need to explore and 
the cluster depth. Choosing clusters with larger depth will make 
more specific recommendations to the users, but it will also require 
learning more about specific characteristics of items and users. 

 
2.3. Problem Formulation 
 
In the contextual MAB based recommendation problem, the 
cluster-based partition K  of the item space (i.e., a disjoint set of 

| |K  K  clusters that cover the whole item space) is given to the 
recommender system. Each time, a user with context x  arrives, a 
cluster k  K  is selected; an item i  in that cluster is randomly 
recommended; and the payoff 

,t i
r r x  is observed. Given the 

number of items in cluster k , 
k

M , the average payoff of cluster k  

equals 
, ,

/
k i x ki k

M 


x .  In order to make a 

recommendation, the algorithm should choose a cluster and an 
item from the chosen cluster. Therefore the algorithm needs to 
keep track of estimated performance of each cluster. 

The recommender system selects the cluster at time t based on 
the current context and the history, which is a collection of past 
contexts, cluster selections, and payoff observations. The history is 
written as 

1 1 1 2 2 2 1 1 1
{( , , ),( , , ), ,( , , )}

t t tt
h k r k r k r   Lx x x   for 

1t   and 
1

h    for 1t  . We denote the history set of each 
period by H , then the algorithm   is defined as a mapping from 
the current context and history to the recommendation action in 
time period t, namely 

1
: t

t
 

 X H K∪ .  We denote the set of 
all history-based algorithms by  . 

Thus, given the cluster set, the learning goal is to find an 
algorithm that maximizes the total average payoff, denoted by 

( )U T  (i.e., 
( , ),1

( ) [ ]
t t t

T

ht
U T 

 x x ), for any T: 

 
( , ),1

max ( ) max [ ]
t t t

T

ht
U T  


 

  x x  (2) 

If all the information is known, the best choice is to choose 
*

,
( ) argmax [ ],

tt t k k
h  K xx . However, in practice, the average 

payoffs 
, tk

 x  and the distribution of context 
t

x  are not known. To 

measure the difference between * ( )U T


 and ( )U T , we 
alternatively define the regret of learning algorithm   as  
 *( ) ( ) ( )R T U T U T 

  . (3) 

 Therefore, the design goal of the learning algorithm is to 
minimize the regret ( )R T . 
 
3. PROPOSED RECOMMENDATION ALGORITHM 

 
In this section, we propose the One-Layer Clustering 
Recommendation (OLCR) algorithm, and prove that the regret of 
this algorithm is sublinear in T. 
 We first present an intuitive illustration of the algorithm in Fig. 
1 and 2. Due to the huge number of items in the system, it is 
inefficient to compare against all the items in the system to select 
an appropriate one, since the learning speed will be very slow. One 
way to select the cluster set K  is to choose clusters in the same 
layer, namely nodes with the same depth in the cluster tree. We 
formalize this selection in our OLCR algorithm, shown in Table II. 
Each time, the algorithm alternates between two phases: the 
exploration phase and the exploitation phase, depending on the 
history and current context. We denote by ( , )B x   the ball in 

context space with center x  and radius  . We consider the t 
  

1 

( 0 1  ) closest past arrivals in context space and use a ball 

( , )
t t

B x   to denote this subspace in the context space, as shown in 

Fig. 1. Let 
, ( , )t tk B x

N   denote the number of past selections of 

cluster k within the ball and 
, ( , )t tk B x

r   denote the sum average 

payoffs of cluster k within the ball. The algorithm checks if there is 
any cluster whose past number of selections within the ball does 

                                                           
1 y     denotes the maximal positive integer number that is smaller than or equal to y . 
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not exceed the threshold lnAt t   ( 0    , 0A ), and if 
so it explores that cluster by selecting it. If all the clusters are 
explored enough, i.e., past number of selections within the ball 
exceeds the threshold, it selects (exploits) the current best cluster 
(by comparing the sum-average of past payoffs of each cluster 
within the ball. When the selection is made, a random payoff 

, tk x
r is observed by the recommender system. 

The performance of the OLCR algorithm, in terms of regret up 
to time T, is given in Theorem 1. 

Theorem 1: The regret ( )
OLCR

R T  up to time T of the OLCR 
algorithm is bounded by 

 

2
1 ( )

(1 /2
1

/

0

1 )

( ) ln ( 1)
3

22
                     

(1 / 2) 1

c c

OLCR

c

d d

c

R T CT T K

LC dTT
dA









 













  


 


 , (4) 

where 0C  is a constant, such that 
0

(1 )/[ ] Cd

t
E C t    , and 

max1 2
C Cd dC KA f c C   is a constant, such that 

Cd
c  is the 

covering constant 2 , and / / ( / )2 2 1C

C

d
d CC d   , ( )   is the 

Gamma function. 
Proof: The proof of Theorem 1 is given in [29]. 

 Note that the regret is sublinear in T, resulting in a sublinearly 
vanishing time average performance loss, which is a stronger result 
than the asymptotic convergence.  

 
4. NUMERICAL RESULTS 

 
In this section, we compare the proposed OLCR algorithm with the 
traditional context-free UCB1 algorithm [12], the context-aware 
collaborative filtering (CACF) algorithm [18], and the hybrid- ε -

                                                           
2 We use a set of balls with any radius ρ  to cover a Cd  dimensional space X . If 
the distance between any two centers of the balls is greater than ρ , then the covering 
constant 

Cdc  is the constant, such that the maximum number of balls in the set is not 

greater than C

C

d
dc ρ − . 

greedy algorithm [19]. In the simulation, we consider a binary item 
cluster tree, whose metric fulfills the exponential tree metric.  
 Simulation results are shown in Fig. 3 and Table III. We 
compare the average regret per period ( ( ) /R t t  for algorithm π ) 
of algorithms in Fig. 3, and show the comparison of regrets up to 
T=100, 000 in Table III. We can see that the OLCR algorithm 
significantly outperforms the context-free UCB1 algorithm, the 
CACF algorithm and the hybrid- ε -greedy algorithm, with 81%, 
59% and 48% reduction of regret for K=64, and 82%, 78% and 69% 
reduction of regret for K=16, respectively. We can also see that the 
convergence rate of the OLCR algorithm increases when the 
number of clusters decreases from K=64 to K=16.  
 

5. CONCLUSIONS 
 
In this paper, we propose a contextual MAB based clustering 
algorithm to design and deploy recommender systems, in which 
both the contexts and the large item space are considered. To 
improve the learning speed, we consider partitioning the item 
cluster tree into a set of clusters. The algorithm alternates between 
the exploration and exploitation phases and aggregates the 
contextual information from a sublinear number of past arrived 
contexts. Theoretical results show that the algorithm can achieve a 
sublinear regret in time T, which is a stronger result than 
asymptotic convergence. Simulations show that our algorithm 
significantly outperforms the existing state-of-the-art algorithms by 
over 50%, in terms of regret. 
 

TABLE II. One-Layer Clustering Recommendation Algorithm 

1: Input: clusters {1,2, }K LK , periods T.  
2: for t=1:T do 
3: Observe the context tx . Find a ball ( , )t tB x ρ  with minimum radius 

tρ , which contains t  
    of past arrived contexts. 

4: if 
( ,, )

,   ln
t tk B x

k st N At t 


   then (Exploration Phase) 

5:      select arm k, and randomly recommend an item in arm k. 
6: else (Exploitation Phase) 
7:    select 

,, ( )
arg max [ ]

t tk k B x
k r   K , and randomly recommend an 

item in cluster k. 
8: end if 
9: Receive the reward: 

t
r . 

10: end for 

 

Table III Comparison of Regrets up to T=100, 000 
(K=64) / (K=16) UCB1 CACF Hybrid- ε  OLCR  

Regret 8387 / 7422 3944 / 6134 3129 / 4385 1632 / 1362 
Performance gain 

over others 
81% / 82% 59% / 78% 48% / 69% - 

 

 
Fig. 2. Recommender system based on OLCR algorithm 

 

    
      (a) K=64                                             (b) K=16 
Fig. 3. The regret performance comparison 

1
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3
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1
t
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t t
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3 3
( , )

t t
B x 

 
Fig. 1. Dynamic subspace selection in the context space 

4564



6. REFERENCES 
 

[1] P. Resnick and H. R. Varian, "Recommender systems," ACM 
Comm., vol. 40, no. 3, pp. 56-58, 1997. 

[2] M. Balabanovi and Y. Shoham, “Fab: content-based, collaborative 
recommendation,” ACM Comm., vol. 40, pp. 66-72, 1997. 

[3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of 
recommender systems: a survey of the state-of-the-art and possible 
extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, pp. 734-749, 
2005. 

[4] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering 
techniques,” Advances in AI, vol 4, 2009. 

[5] F. Sanchez, M. Alduan, F. Alvarez, J. Menendez, and O. Baez, 
“Recommender system for sport videos based on user audiovisual 
consumption,” IEEE Trans. Multimedia, vol. 14, no. 6, pp. 1546-
1557, 2012. 

[6] M. J. Pazzani and D. Billsus, “Content-based recommendation 
systems,” in The Adaptive Web, LNCS, vol 4321, pp. 325-341. 
Springer Berlin Heidelberg, 2007. 

[7] R. Burke, “Hybrid recommender systems: Survey and 
experiments,” User modeling and user-adapted interaction, vol 12, 
no. 4, pp. 331-370, 2002. 

[8] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, “An 
efficient hybrid music recommender system using an incrementally 
trainable probabilistic generative model,” IEEE Trans. Audio, Speech, 
Language Process., vol. 16, no. 2, pp. 435-447, 2008. 

[9] H. Liu, K. Liu, and Q. Zhao, “Logarithmic weak regret of non-
Bayesian restless multi-armed bandit,” in IEEE ICASSP, pp. 1968-
1971, 2011. 

[10] W. Dai, Y. Gai, B. Krishnamachari, and Q. Zhao, “The non-Bayesian 
restless multi-armed bandit: A case of near-logarithmic regret,” 
in IEEE ICASSP, pp. 2940-2943, 2011. 

[11] K. Wang and L. Chen, “On optimality of myopic policy for restless 
multi-armed bandit problem: an axiomatic approach,” IEEE Trans. 
Signal Process., vol. 60, no. 1 pp. 300-309, 2012. 

[12] P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time Analysis of the 
Multi-armed Bandit Problem," Machine Learning, vol. 47, pp. 235-
256, 2002. 

[13] Y. Deshpande and A. Montanari, “Linear bandits in high dimension 
and recommendation systems,” in Proc. 50th Allerton Conference, 
pp. 1750-1754, 2012. 

[14] N. C.- Bianchi and G. Lugosi, Prediction, learning, and games. 
Cambridge Univ. Press, 2006. 

[15] G. Adomavicius and A. Tuzhilin, “Context-aware recommender 
systems,” in Recommender Systems Handbook, Springer US, pp. 217-
253, 2011. 

[16] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, 
“Incorporating contextual information in recommender systems using 
a multidimensional approach,” ACM Trans. Inf. Syst., vol 23, no. 1, 
pp. 103-145, 2005. 

[17] A. Said, S. Berkovsky, E. W. De Luca, and J. Hermanns, “Challenge 
on context-aware movie recommendation: CAMRa2011,” in Proc. 
5th ACM Conf. on Recommender Syst., pp. 385-386, 2011. 

[18] A. Chen, “Context-aware collaborative filtering system: Predicting 
the user’s preference in the ubiquitous computing environment,” 
in Location-and Context-Awareness, Springer Berlin Heidelberg, pp. 
244-253, 2005. 

[19] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski, “Hybrid-ε-
greedy for mobile context-aware recommender system,” Advances in 
Knowledge Discovery and Data Mining, Springer Berlin Heidelberg, 
pp. 468-479, 2012. 

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit 
approach to personalized news article recommendation,” in Proc. 
19th WWW, Raleigh, North Carolina, USA, 2010. 

[21] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits 
with linear payoff functions,” in Int. Conf. AI Statistics, pp. 208-214, 
2011. 

[22] A. Slivkins, “Contextual Bandits with Similarity Information,” 24th 
Annual COLT, 2011. 

[23] T. Lu, D. Pal, and M. Pal, “Contextual multi-armed bandits,” ACM 
AISTATE, 2010. 

[24] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-Based 
Recommender System,” ACM J. Machine Learning, vol. 6, pp. 1265-
1295, 2005. 

[25] S. Pandey, D. Chakrabarti, and D. Agarwal, “Multi-armed bandit 
problems with dependent arms,” in Proc. 24th ACM Int. Conf. 
Machine learning, pp. 721-728, 2007. 

[26] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in 
metric spaces,” in Proc. 40th annual ACM symp. on Theory of 
Comput., 2008. 

[27] A. Slivkins, F. Radlinski, and S. Gollapudi, “Ranked bandits in metric 
spaces: learning diverse rankings over large document collections,” J. 
Machine Learning Research, vol. 14, pp.399-436, 2013. 

[28] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup, “On 
the approximability of numerical taxonomy (fitting distances by tree 
metrics),” SIAM Journal on Computing, vol. 28, no. 3, pp. 1073-
1085, 1999. 

[29] L. Song, C. Tekin, and M. van der Schaar, “Appendix,” Available: 
medianetlab.ee.ucla.edu/~linqi/appendix_recommendation.pdf 
 

4565


