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ABSTRACT
We present a novel family of adaptive filtering algorithms
based on a relative logarithmic cost. The new family intrin-
sically combines the higher and lower order measures of
the error into a single continuous update based on the error
amount. We introduce the least mean logarithmic square
(LMLS) algorithm that achieves comparable convergence
performance with the least mean fourth (LMF) algorithm
and overcomes the stability issues of the LMF algorithm.
In addition, we introduce the least logarithmic absolute
difference (LLAD) algorithm. The LLAD and least mean
square (LMS) algorithms demonstrate similar convergence
performance in impulse-free noise environments while the
LLAD algorithm is robust against impulsive interference and
outperforms the sign algorithm (SA).

Index Terms— Logarithmic cost function, robustness
against impulsive noise, stable adaptive method

I. INTRODUCTION
Adaptive filtering algorithms define certain statistical mea-

sure of the error signal, denoting the difference between
the observed input and estimated output, as the cost and
minimize the cost iteratively through certain update rules.
The conventional least mean square (LMS) algorithm uses
the mean square error that has mathematical tractability
and relative ease of analysis. Based on the famous LMS
algorithm, there are alternative adaptive filtering algorithms
which reduce the convergence time, e.g., the least mean
fourth (LMF) algorithm; or reduce the computational com-
plexity while providing robustness against outliers, e.g., the
sign algorithm (SA) [1].

The LMF algorithm uses the fourth power of the error as
the cost function [2] and achieves better trade-off between
the transient and steady-state performance, however, has
certain stability issues [3]. In [3], authors propose the stable
normalised LMF algorithm, which might also be derived
through the proposed relative logarithmic error cost frame-
work as shown in this paper.

The performance of the least-squares algorithms degrades
severely when the input and desired signal pairs are per-
turbed by heavy tailed impulsive interferences, e.g., in
applications involving high power noise signals. The SA
uses the L1 norm of the error as the cost and is robust
against impulsive interferences since its update involves only
the sign of et. However, the SA usually exhibits slower
convergence performance especially for highly correlated
input signals [1].

In this paper, we present a new family of adaptive filters
proposed in [4]. We use diminishing return functions, e.g.,
the logarithm function, as a normalization (or a regulariza-
tion) term, i.e., as a subtracting term, in the cost function
in order to improve the convergence performances. We
particularly choose the logarithm function as the normalizing
diminishing return function [5] in our cost definitions since
the logarithmic function is differentiable and results efficient
and mathematically tractable adaptive algorithms. By using
the logarithm function, we are able to use of the higher-order
statistics of the error for small perturbations. Furthermore,
for larger error values, the introduced algorithms seek to
minimize the conventional cost functions due to the de-
creasing weight of the logarithmic term with the increasing
error amount. In this sense, the new framework is akin to a
continuous generalization of the switched norm algorithms,
hence greatly improve the convergence performance of the
mixed-norm methods [6], [7] as shown in this paper.

II. PROBLEM DESCRIPTION

The mixed-norm algorithms minimize a combination of
different error norms in order to achieve improved conver-
gence performance [6], [7]. Even though the combination
parameter brings in an extra degree of freedom, the design
of the mixed norm filters requires the optimization of the
mixing parameter based on a priori knowledge of the input
and noise statistics. On the other hand, the logarithmic
cost intrinsically combines cost with different order of error
measures based on the error amount.

The impulsive interferences severely degrade the algo-
rithmic updates. In general, the samples contaminated with
impulses contain little useful information. Hence, the robust
algorithms need to be less sensitive only against large
perturbations on the error and can be as sensitive as the
conventional least squares algorithms for small error values.
The switched-norm algorithms switch between the L1 and
L2 norms based on the error amount such as the robust Huber
filter [8]. This approach combines the better convergence of
L2 and the robustness of L1 together in a discrete manner
with a breaking point in the cost function. We propose a
continuous cost function to avoid possible anomalies that
might arise due to the breaking points.

In the next section, we introduce the logarithmic cost
framework.
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III. COST FUNCTION WITH LOGARITHMIC
ERROR

Consider the system identification framework where we
observe an unknown vector1 wo ∈ Rp through a linear
model

dt = wT
o xt + nt,

where nt represents the noise and xt ∈ Rp is the regression
signal. In the logarithmic cost framework, we estimate the
unknown system vector wo through the minimization of the
following cost function:

J (et)
4
= F (et)−

1

α
ln (1 + αF (et)) , (1)

where et
4
= dt − d̂t denotes the error between the desired

signal dt and the estimation d̂t, α > 0 is a design parameter,
and F (et) is a conventional cost function, e.g., F (et) =
E [|et|] or F (et) = E

[
e2
t

]
.

In [9], the authors propose a stochastic cost function using
the logarithm function as follows

J [9](et)
4
=

1

2γ
ln

(
1 + γ

(
et
‖xt‖

)2
)

where γ > 0 is a design parameter. Note that the cost
function J [9](et) is the subtracted term in (1) for F (et) =
e2t
‖xt‖2 . The Hessian matrix of J [9](et) is given by

H
(
J [9](et)

)
=

xtx
T
t

‖xt‖2
(
1 + γ

(
et
‖xt‖

)2
)

×

1− 2γe2
t

‖xt‖2
(
1 + γ

(
et
‖xt‖

)2
)
 .

We emphasize that H
(
J [9](et)

)
is positive semi-definite

provided that γ
(

et
‖xt‖

)2

≤ 1, thus, the parameter γ should
be chosen carefully to be able to efficiently use the gradient
descent algorithms. On the other hand, the Hessian matrix
of J(et) is given by

H (J(et))=H (F (et))
αF (et)

1 + αF (et)
+
α∇wF (et)∇wF (et)T

(1 + αF (et))
2 ,

which is positive semi-definite provided that H (F (et)) is a
positive semi-definite matrix, which enables the use of the
diminishing return property [5] of the logarithm function

1As a notation, bold lower (or upper) case letters denote the vectors
(or matrices). For a vector a (or matrix A), aT (or AT ) is its ordinary
transpose. ‖ · ‖ and ‖ · ‖A denote the L2 norm and the weighted L2

norm with the matrix A, respectively (provided that A is positive-definite).
| · | is the absolute value operator. We work with real data for notational
simplicity. For a random variable x (or vector x), E[x] (or E[x]) represents
its expectation. Here, Tr(A) denotes the trace of the matrix A and∇xf(x)
is the gradient operator.

for stable and robust updates.

Remark 3.1: By Maclaurin series of the natural logarithm
for αF (et) ≤ 1, (1) yields

J(et) = F (et)−
1

α

(
αF (et)−

α2

2
F 2(et) + · · ·

)
=
α

2
F 2(et)−

α2

3
F 3(et) + · · · , (2)

which is an infinite combination of the conventional cost
function for small values of F (et). We emphasize that the
cost function (2) yields to the second power of the cost
function F (et) for small values of the error while for large
error values, the cost function J(et) resembles F (et) as
follows:

F (et)−
1

α
ln (1 + αF (et))→ F (et) as et →∞,

since the cost F (et) increases with increasing error amount.
Hence, the new methods are the combinations of the algo-
rithms with mainly F 2(et) or F (et) cost functions based on
the error amount. It is important to note that the objective
functions F 2(et), e.g., E[e2

t ]
2, and F (e2

t ), e.g., E[e4
t ], yields

the same stochastic gradient update after removing the
expectation in this paper.

IV. NEW ALGORITHMS
Based on the gradient of J(et) we obtain the general

steepest descent update as

wt+1 = wt − µ∇wF (et)
αF (et)

1 + αF (et)
,

where µ > 0 is the step size and α is a positive design
parameter with a typical value α = 1. If we assume that
after removing the expectation to generate stochastic gradient
updates F (et) yields f(et), e.g., F (et) = E[f(et)], then the
general stochastic gradient update is given by

wt+1 = wt + µxt∇etf(et)
αf(et)

1 + αf(et)
. (3)

In the following subsections, we introduce algorithms
improving the performance of the conventional algorithms
such as the LMS (i.e. f(et) = e2

t ), sign algorithm (i.e.
f(et) = |et|) and normalized updates.

IV-A. The Least Mean Logarithmic Square (LMLS)
Algorithm

For F (et) = E[e2
t ], the stochastic gradient update yields

wt+1 = wt + µ
αxte

3
t

1 + αe2
t

. (4)

Note that we include the multiplier ‘2’ coming from the
gradient ∇ete2

t = 2et into the step-size µ. The algorithm (4)
resembles a least-mean fourth update for the small error
values while it behaves like the least-mean square algorithm
for large perturbations on the error.
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IV-B. The Least Logarithmic Absolute Difference
(LLAD) Algorithm

The SA utilizes F (et) = E[|et|] as the cost func-
tion, which provides robustness against impulsive interfer-
ences [10]. However, the SA has slower convergence rate
since the L1 norm is the smallest possible error power for
a convex cost function. In the logarithmic cost framework,
for F (et) = E[|et|], (3) yields

wt+1 = wt + µ
αxtet

1 + α|et|
. (5)

The algorithm (5) combines the LMS algorithm and SA
into a single robust algorithm with improved convergence
performance.

IV-C. Normalized Updates

For F ( et
‖xt‖ ) = E [( et

‖xt‖
)

2
]
, we get the normalized least

mean logarithmic square (NLMLS) algorithm given by

wt+1 = wt +
µαxte

3
t

‖xt‖2 (‖xt‖2 + αe2
t )
. (6)

We point out that (6) is also proposed as the stable normal-
ized least mean-fourth algorithm in [3].

For F ( et
‖xt‖ ) = E

[
|et|
‖xt‖

]
, we obtain the normalized least

logarithmic absolute difference (NLLAD) algorithm as

wt+1 = wt +
µαxtet

‖xt‖ (‖xt‖+ |et|)
.

Next, we provide the stability bound for the learning rate
of the LMLS algorithm and provide steady-state analysis of
the LLAD algorithm in the impulsive noise environments.

IV-D. Stability Bound for the LMLS Algorithm

In [4], we show that the step size bound for the LMLS is
given by

µ ≤ 1

E [‖xt‖2]
inf

E[e2a,t]∈Ω

{
E[ea,tet]

E [e2
t ]

β

}
,

where ea,t = xTt (wo −wt) denotes the a priori error and

β
4
=

E
[

αe4t
1+αe2t

]
E
[

α2e6t
(1+αe2t )2

]
=
E
[

αe4t
(1+αe2t )2

]
+ E

[
α2e6t

(1+αe2t )2

]
E
[

α2e6t
(1+αe2t )2

] ≥ 1.

We emphasize that the LMLS extends the stability bound
of the LMS algorithm (the same bound with β = 1)
while performing comparable performance with the LMF
algorithm, which has several stability issues [3].

IV-E. Robustness Analysis for the LLAD Algorithm
In order to analyze the performance in the impulsive noise

environments, we use the following model.

Impulsive noise model: We model the noise as a summation
of two independent random terms [11] as

nt = no,t + btni,t,

where no,t is the ordinary noise signal that is zero-mean
Gaussian with variance σ2

no
and ni,t is the impulse-noise that

is also zero-mean Gaussian with significantly large variance
σ2
ni

. Here, bt is generated through a Bernoulli random
process and determines the occurrence of the impulses in the
noise signal with pB(bt = 1) = νi and pB(bt = 0) = 1− νi
where νi is the frequency of the impulses in the noise signal.
The corresponding probability density function is given by

pn(nt) =
1− νi√
2πσno

exp

(
− n2

t

2σ2
no

)
+

νi√
2πσn

exp

(
− n2

t

2σ2
n

)
,

where σ2
n = σ2

no
+ σ2

ni
.

We particularly analyze the steady-state performance of
the LLAD algorithm (for which f(et) = |et|) in the
impulsive noise environments since we motivate the LLAD
algorithm as improving the steady state convergence perfor-
mance of the SA. Based on the impulsive noise model, in
[4], we provide the steady-state excess mean square error
(EMSE) of the LLAD algorithm as follows

ζ∗LLAD =
µTr(R)

(
νi + α2(1− νi)σ2

no

)
α(1− νi)(2− αµTr(R)) +

√
8
π
νi
σn

. (7)

Remark 4.1: Increasing νi or in other words more frequent
impulses cause larger steady state EMSE. However, through
the optimization of α, we can minimize the steady state
EMSE (7). After some algebra, the optimum design param-
eter in impulsive noise environment is roughly given by

αopt ≈
√

νi
1− νi

1

σno

.

V. NUMERICAL EXAMPLES
We particularly compare the convergence rate of the algo-

rithms for the same steady state MSD through the specific
choice of the step sizes for a fair comparison. Here, we have
a stationary data dt = wT

o xt + nt where xt is zero-mean
Gaussian i.i.d. regression signal with variance σ2

x = 1, nt
represents zero-mean Gaussian i.i.d. noise signal with the
variance σ2

n = 0.01 and the parameter of interest wo ∈ R5

is randomly chosen.
In Fig. 1, we compare the convergence rate of the LMLS,

LMF and LMS algorithms for small and relatively large step
sizes. Fig.1a shows that LMLS and LMF algorithms achieve
comparable performance and LMLS achieves better conver-
gence performance than the LMS algorithm. In Fig. 1b, we
compare the LMLS and LMS algorithms for relatively large
step sizes. We only include the LMLS and LMS algorithms
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(a) µLMLS = µLMF = 0.01 and µLMS = 0.00047.
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(b) µLMLS = 0.1 and µLMS = 0.0047 (LMF is unstable for µLMF = 0.1).

Fig. 1. Comparison of the MSD of the LMLS, LMS and LMF algorithms.
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(a) Impulse-free noise environment, α = 1.
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(b) 1% impulsive noise environment, αopt = 1.005

Fig. 2. Comparison of the MSD of the LLAD, SA and LMS algorithms.

since the LMF algorithm is not stable for such a step-
size. Hence, the LMLS algorithm demonstrates comparable
convergence performance with the LMF algorithm with
extended stability bound.

In Fig. 2, we compare the LLAD, SA and LMS algorithms
in impulse-free and 1% impulsive noise environments. Fig.2a
shows that the LLAD algorithm shows comparable conver-
gence performance with the LMS algorithm. In Fig.2b, we
use the impulsive noise model with σ2

ni
= 104 and we

observe that the LMS algorithm does not converge while the
LLAD algorithm, which achieves comparable convergence
performance with the LMS algorithm in the impulse free
environment, performs still better than the SA.

VI. CONCLUSION
In this paper, we present a novel family of adaptive

filtering algorithms based on the logarithmic error cost
framework. We propose important members of the new
family, i.e., the LMLS and LLAD algorithms. The LMLS
algorithm achieves comparable convergence performance
with the LMF algorithm with far larger stability bound on
the step size. In the impulse-free environment, the LLAD
algorithm has a similar convergence performance with the
LMS algorithm. Furthermore, the LLAD algorithm is robust
against impulsive interferences and outperforms the SA.
Finally, we show the improved convergence performance of
the new algorithms in several different system identification
scenarios.
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