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ABSTRACT

The existing kernel filtering algorithms are classified
into two categories depending on what space the optimiza-
tion is formulated in. This paper bridges the two different
approaches by focusing on the isomorphism between the
dictionary subspace and a Euclidean space with the inner
product defined by the kernel matrix. Based on the isomor-
phism, we propose a novel kernel adaptive filtering algorithm
which adaptively refines the dictionary and thereby achieves
excellent performance with a small dictionary size. Numeri-
cal examples show the efficacy of the proposed algorithm.

1. INTRODUCTION

We address an adaptive estimation problem of a nonlinear
system ψ : U → R with sequentially arriving input-output
pairs (un, dn)n∈N ⊂ U × R. Here, the input space U is a

compact subset of the L dimensional Euclidean space R
L.

Kernel adaptive filtering is an attractive approach for this task
[1–11]. In kernel adaptive filtering, ψ is estimated by an
element of a reproducing kernel Hilbert space (RKHS) H
associated with a prespecified positive definite kernel [12]
κ : U × U → R, (x,y) �→ κ(x,y). A kernel adaptive
filter ϕn : U → R at time n ∈ N is given by

ϕn(·) =
∑
j∈Jn

hj,nκ(·,uj), n ∈ N, (1)

where hj,n ∈ R are the filter coefficients and Jn := {j(n)1 ,

j
(n)
2 , · · · , j(n)rn } ⊂ {0, 1, · · · , n} indicates the dictionary
{κ(·,uj)}j∈Jn

which is assumed linearly independent.
The kernel least mean square (KLMS) algorithm [3] up-

dates the filter only when the current input datum un is added
into the dictionary. The quantized KLMS (QKLMS) algo-
rithm [8] eliminates such limitation by updating the coeffi-
cient of a dictionary element which is maximally coherent to
κ(·,un). A more systematic scheme has been proposed in
[9] under the name of hyperplane projection along affine sub-
space (HYPASS), using the projection of κ(·,un) onto the dic-
tionary subspace Mn := span{κ(·,uj)}j∈Jn

⊂ H. Specifi-
cally, it is based on the following optimization problem:

min
ϕ∈Πn

‖ϕ− ϕn‖H , n ∈ N, (2)

where Πn := {ϕ ∈ Mn : ϕ(un) = 〈ϕ, κ(·,un)〉H = dn}.

Here, 〈·, ·〉H and ‖·‖H denote the inner product and the norm
defined in H, respectively. All those algorithms formulate the
optimization problem in the RKHS H, and thus we classify
them into the RKHS approach (cf. [7]). The algorithms pre-
sented in [1, 5, 8, 10] also share the same spirit.

In contrast, the kernel normalized least mean square
(KNLMS) algorithm [4] is based on the following optimiza-
tion problem:

This work was supported by KDDI Foundation.

min
h∈Hn

‖h− hn‖ , n ∈ N, (3)

where hn :=
[
h
j
(n)
1 ,n

, h
j
(n)
2 ,n

, · · · , h
j
(n)
rn ,n

]T
and Hn :=

{h ∈ R
rn : 〈κn,h〉 = dn} is a zero-instantaneous-

error hyperplane with the kernelized input vector κn :=
[κ(un,uj

(n)
1

), κ(un,uj
(n)
2

), · · · , κ(un,uj
(n)
rn

)]T. Here, 〈·, ·〉
and ‖·‖ denote the canonical inner product and the Euclidean

norm defined in R
L, respectively. This algorithm formu-

lates the optimization problem in the parameter space R
L,

and thus we classify it into the parameter-space approach
(cf. [7]). The algorithms presented in [2, 7] also share the
same spirit. To the best of the authors’ knowledge, there has
been no literature that studies the relation between the two
distinct approaches.

The first contribution of this paper is to provide a basis to
clarify the relationship between the two approaches. We show
that the dictionary subspace Mn and an rn-dimensional Eu-
clidean space with an inner product defined with the kernel
matrix, say Gn, are isomorphic. This means that the learning
in Mn can be regarded as the learning in R

rn with the par-
ticular Gn inner product. Based on the isomorphism between
Mn and R

rn , we define the restricted gradient, which is the
gradient of the cost functional under the restriction to Mn.
The restricted gradient, together with the isomorphism, pro-
vides a way to view the behaviors of the two approaches in a
common space, either in Mn or in R

rn . It turns out that one
cannot generally say that one of the two approaches is better
than the other.

The second contribution is to derive a promising RKHS-
type algorithm that suppresses the weighted squared-distance
functions penalized by the popular �1 norm; the penalty term
is for the sake of adaptive refinements of the dictionary. A
straightforward approach is to apply the adaptive proximal
forward-backward splitting (APFBS) algorithm [13] to the
cost function (which is the sum of smooth and nonsmooth
functions) under the Gn inner product. However, the proxim-
ity operator defined with the Gn inner product does not work
well when Gn has a large eigenvalue spread. We therefore
propose a heuristic, but efficient, algorithm that employs the
proximity operator defined with the standard inner product.
Although the proposed algorithm uses different inner prod-
ucts between the forward and backward steps, we show that
it still enjoys a monotone approximation property regarding a
cost function with a certain modified weighted �1 norm un-
der some conditions. The proposed algorithm also enjoys
fast convergence due to the use of parallel projection (data
reusing). The numerical examples show that the proposed al-
gorithm enjoys a high adaptation-capability while maintain-
ing a small dictionary size and low computational complexity.
Relation to prior work: An adaptive dictionary-refinement
technique based on the proximity operator of a weighted
(block) �1 norm for kernel adaptive filtering has first been
proposed by Yukawa in 2011 [7, 14] for the parameter-space
approach in the multikernel adaptive filtering context. A sim-
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ilar algorithm (for the monokernel case) has been proposed
and analyzed by Gao et al. in 2013 [15]. The sparse QKLMS
algorithm has been proposed by Chen et al. in 2012 [16];
this algorithm is based on the subgradient method and has no
guarantee of monotone approximation.

2. ISOMORPHISMS OF A FUNCTIONAL SUBSPACE
AND A EUCLIDEAN SPACE

2.1. Viewing RKHS approach in parameter-space

Define the rn × rn kernel matrix Gn whose (s, t) entry is
given by [Gn]s,t := κ(u

j
(n)
s

,u
j
(n)
t

), where 1 ≤ s, t ≤ rn
(rn is the dictionary size). The matrix Gn is ensured to be
positive definite due to the assumption that the dictionary is

linearly independent.1 We can therefore define an inner prod-

uct by 〈x,y〉Gn
:= xTGny, x,y ∈ R

rn .

Lemma 1 A pair of real Hilbert spaces (Mn, 〈·, ·〉H) and(
R

rn , 〈·, ·〉Gn

)
are isomorphic under the correspondence

Mn 
 ϕ :=
∑
j∈Jn

hjκ(·,uj)

←→ [h
j
(n)
1

, h
j
(n)
2

, · · · , h
j
(n)
rn

]T =: h ∈ R
rn . (4)

Proof: Because the dictionary is linearly independent, the
correspondence is clearly a bijective mapping. The inner

product of ϕ and ϕ̂ :=
∑

j∈Jn
ĥjκ(·,uj) is 〈ϕ, ϕ̂〉H =∑

j∈Jn

∑
j∈Jn

hiĥjκ(ui,uj) = hTGnĥ =
〈
h, ĥ

〉
Gn

.

This verifies that the bijective mapping is inner product pre-
serving. �

Lemma 1 states that the learning in Mn can be regarded
as the learning in R

rn with the inner product 〈·, ·〉Gn
. This

reveals that the KNLMS and (fully-updating version of) HY-
PASS algorithms can be regarded as operating the projection
onto the same hyperplane Hn ⊂ R

rn with the canonical and
Gn inner products, respectively. Note here that Πn and Hn
in (2) and (3) can be regarded to be the same under the corre-
spondence in (4).

2.2. Restricted gradient and error surface consideration

We reconsider the two approaches from a stochastic-gradient
viewpoint. It is straightforward to derive a stochastic-gradient
method for the mean squared error (MSE) cost function
J(h) := E[{dn − 〈h,κn〉}2]. On the other hand, it is not
straightforward to derive a stochastic-gradient method for

J̃(ϕ) := E[{dn − 〈ϕ, κ(·,un)〉H}2] in such a way that the
learning is done within the dictionary subspace Mn. We

therefore define the gradient of J̃(ϕ) at ϕ ∈ Mn under the
restriction to the dictionary subspace Mn; the restricted gra-

dient is denoted by ∇|Mn
J̃(ϕ). The direction Δϕ∗ of the

restricted gradient ∇|Mn
J̃(ϕ) is given by

Δϕ∗ = arg max
Δϕ∈Mn, ‖Δϕ‖

H
=1

〈
∇J̃(ϕ),Δϕ

〉
H
. (5)

1The positive definiteness can be verified by noting that (i) the matrix
Gn is automatically positive semidefinite by the definition of positive defi-
nite kernels and that (ii) the dictionary is linearly independent if and only if

h
T
Gnh = 0 ⇔ h = 0, h ∈ Rrn .
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(a) J̃(ϕ), cond2(Gn) � 1
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(b) J̃(ϕ), cond2(Gn) ≈ 1
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(d) J(h), cond2(Gn) ≈ 1

Fig. 1. Equal error contours of J̃ (ϕ) and J (h) for rn = 2.

See [1] for the computation of ∇J̃(ϕ). The following propo-
sition can easily be verified by Lemma 1.

Proposition 1 The direction Δϕ∗ of the restricted gradient

∇|Mn
J̃(ϕ) given in (5) at ϕ(←→ h ∈ R

rn) can be repre-

sented as follows (α := [∇J(h)TG−1
n ∇J(h)]−1/2 > 0):

Δϕ∗ ←→ Δh∗ = arg max
‖Δh‖

Gn
=1

〈
G−1

n ∇J(h),Δh
〉
Gn

= αG−1
n ∇J(h). (6)

Definition 1 The restricted gradient ∇|M J̃(ϕ) is defined by

∇|Mn
J̃(ϕ) ←→ ∇Gn

J(h) := G−1
n ∇J(h). (7)

While the error contours of the parameter-space approach

is governed by R := E[κnκ
T

n], those of the RKHS ap-
proach is governed by the modified autocorrelation matrix

G
− 1

2
n RG

− 1
2

n as can be seen from the above arguments.
Therefore, the error-contours are close to each other when
the eigenvalue spread of Gn is close to the unity, while quite
different when the eigenvalue spread is large. This is illus-
trated in Fig. 1 which depicts the equal-error contours of

J̃(ϕ) and J(h) together with the behaviors of the associated
approaches. It is seen that one cannot tell in general which of

R and G
− 1

2
n RG

− 1
2

n is better conditioned, implying that one
cannot tell in general which of the two approaches perform

better.2

2Some may immediately think that the dictionary could be designed so

that G
−

1
2

n RG
−

1
2

n is well conditioned, provided that an estimate of R is
available. However, this straightforward intuition stems only from the aspect
of the convergence speed. A more critical aspect to be considered in de-
signing the dictionary is the representation ability which should be discussed
apart from the convergence speed.
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3. PROPOSED SPARSE ALGORITHM

3.1. Cost function and a straightforward idea

Define a sequence of convex functions (Θn)n∈N as follows:

Θn(h) := Φn(h) + λΩn(h), h ∈ R
rn , (8)

where λ > 0 is the regularization parameter and

Φn(h) :=
1

2

∑
ι∈In

ν(n)ι d2Gn
(h, C(n)

ι ) (smooth), (9)

Ωn(h) := ‖wn ◦ h‖1 (nonsmooth). (10)

Here, Φn(h) is a weighted squared-distance function with

ν
(n)
ι > 0 satisfying

∑
ι∈In

ν
(n)
ι = 1, ι ∈ In := {n, n −

1, · · · , n−p+1}, and dGn
(h, C

(n)
ι ) := min

ĥ∈C
(n)
ι

∥∥∥h− ĥ

∥∥∥
Gn

denotes the metric distance to the closed convex sets:

C(n)
ι :=

{
h ∈ R

rn :
(〈

h,G−1
n κn

〉
Gn

− dι

)2

≤ ρ

}
, ι ∈ In,

where ρ ≥ 0. Note that C
(n)
ι s accommodate the p most

recent data so that the algorithm attains fast convergence.
The second term Ωn(h) is the weighted l1 norm, for dic-
tionary sparsification (refinement), with the weights wn :=

[w
(n)

j
(n)
1

, w
(n)

j
(n)
2

, · · · , w(n)

j
(n)
rn

]T, w
(n)
j > 0, ∀j ∈ Jn; wn ◦ h

denotes the Hadamard product of wn and h.
A natural idea in the light of Section 2 would be to ap-

ply APFBS to the function sequence (Θn)n∈N with the in-
ner product 〈·, ·〉Gn

. This straightforward approach, however,

does not work well due to the following two reasons. First, the
proximity operator of Ωn in the Hilbert space (Rrn , 〈·, ·〉Gn

)
has no closed form expression. Second, even if we com-
pute it by an iterative algorithm, e.g. the proximal forward-
backward splitting method, efficient dictionary-refinements
are not achieved when the eigenvalues spread of Gn is large.
(This happens when coherent data exist in the dictionary.)
This motivates us to propose a modified algorithm presented
in the following subsection.

3.2. Proposed sparse algorithm

The proposed algorithm employs the canonical inner prod-
uct 〈·, ·〉I for the proximity operator (backward step) while

employing the different inner product 〈·, ·〉Gn
for the gradi-

ent (forward step). This allows a closed-form expression of
the proximity operator and also brings efficient dictionary-
refinements.

Algorithm 1 (Φ-PASS II) For the initial estimate h0 := 0,
generate the sequence (hn)n∈N by

hn+1 := T
[
proxIμnλΩn

(hn − μn∇Gn
Φn(hn))

]
(11)

where μn ∈ [0, 2] is the step size, the proximity operator is
defined as

proxIμnλΩn
(x) := arg min

y∈Rrn

(
f(y) +

1

2μnλ
‖x− y‖2I

)
,

(12)

Table 1. Summary of the proposed algorithm.

The Φ-PASS II algorithm

Requirement : step size μn ∈ [0, 2]
Initialization : J−1 := ∅
Filter output : ϕn(un) :=

∑
j∈Jn

hj,nκ(un,uj)
Filter update :
1. Define Jn based on the coherence criterion [9]

Jn :=

⎧⎪⎨
⎪⎩
{j ∈ Jn−1 : hj,n−1 �= 0} ∪ {n},

if maxj∈Jn

|κ(un,uj)|√
κ(un,un)

√
κ(uj ,uj)

≤ σ,

{j ∈ Jn−1 : hj,n−1 �= 0}, otherwise,
where σ > 0.

2. If n ∈ Jn, let hn,n := 0.

3. PGn

C
(n)
ι

(hn) = hn + ς
(n)
ι

|dι−hT

nκι|−√
ρ

κT
ιG

−1
n κι

G−1
n κι, ι ∈ In,

where ς
(n)
ι := 0, if

∣∣∣dι − 〈
hn,G

−1
n κι

〉
Gn

∣∣∣ ≤ √
ρ,

and ς
(n)
ι := sgn(dι −

〈
hn,G

−1
n κι

〉
Gn

) , otherwise.

4. ĥn = hn + μn

(∑
ι∈In

ν
(n)
ι PGn

C
(n)
ι

(hn)− hn

)
5. hj,n+1

= sgn(ĥj,n)max{|ĥj,n| − μnλw
(n)
j , 0}, j ∈ Jn

and T : Rrn → R
rn+1 is the operator (i) that removes the

zero components and (ii) that adds zero as a new entry at
the bottom of the vector if the current datum has significant
novelty for the current dictionary.

The summary of the Φ-PASS II algorithm is presented in Ta-
ble 1, in which sgn(·) denotes the signum function defined as
sgn(x) = 1, if x ≥ 0, sgn(x) = −1, if x < 0.

Although Φ-PASS II uses different inner products be-
tween the forward and backward steps, a monotone approxi-
mation property still holds for a modified cost function with
a certain modified weighted �1 norm under some conditions,
as shown in the following proposition.

Proposition 2 (Monotone approximation) Assume that
(A1) sgn(GnW na) = sgn(a), ∀a ∈ {1,−1}rn , and

(A2) ĥn := hn − μn∇Gn
Φn(hn) ∈ Dn := {h ∈ R

rn :

|hi| > μnλw
(n)

j
(n)
i

, i = 1, 2, · · · , rn}. Then, Algorithm 1 satis-

fies the monotone approximation property:

∥∥∥h̃n+1 − h∗
∥∥∥
Gn

< ‖hn − h∗‖Gn
(13)

for any h∗ ∈ Sn := arg min
h∈Rrn

Θ̃n(h), if hn �∈ Sn �= ∅, where

h̃n+1 = proxIμnλΩn
(ĥn) and

Θ̃n(h) := Φn(h) + λΩ̃n(h), h ∈ R
rn (14)

with a modified weighted l1 norm Ω̃n(h) = ‖w̃n ◦ h‖1 , h ∈
R

rn . Here, w̃n := GnW n sgn(ĥn) with W n := diag(wn).

Sketch of proof: By the assumptions (A1) and (A2), we

have sgn(w̃n) = sgn(ĥn) = sgn(h̃n+1). Hence, it follows

that ∂IΩn(h̃n+1) = {W n sgn(h̃n+1)} = G−1
n {w̃n} =

G−1
n ∂IΩ̃n(h̃n+1) = ∂Gn

Ω̃n(h̃n+1). Here, for a continuous
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Table 2. Computational complexity of the proposed and con-
ventional algorithms.

Proposed
O(r3) + (r2 + r)L/2

+p(r2 + 3r) + 3r

Proposed

(low-complexity)

p[O(s3) + (s2 − s)L/2

+s2 + 2s+ 2r] + 3r + rL

Sparse QKLMS [16] O((r − 1)2)+rL+r2+2r
FOBOS-KLMS [15] 5r + rL

convex function f : Rrn → R and a positive definite matrix
A ∈ R

rn×rn , ∂Af(x) := {x̃ ∈ R
rn : 〈y − x, x̃〉A+f(x) ≤

f(y), ∀y ∈ R
rn} �= ∅ denotes the subdifferential of f at

x ∈ R
rn . Since proxIμnλΩn

= (I + μnλ∂IΩn)
−1

, it holds

that ĥn − h̃n+1 ∈ μnλ∂IΩn(h̃n+1) = μnλ∂Gn
Ω̃n(h̃n+1),

implying that h̃n+1 = proxGn

μnλΩ̃n

(ĥn). This verifies the

claim (cf. [13]). �

The assumption (A1) holds, for instance, if W n = I and
Gn is diagonally dominant. The assumption (A2) is violated

if ĥn contains some nearly zero components. In such a case,
however, those minor components are discarded and it does
not seriously affect the overall performance, as will be shown
in Section 4.

The computational complexity of theΦ-PASS II algorithm
can be reduced by selecting and updating only a few, say
s ≤ rn, coefficients of κ(·,uj) that are maximally coher-
ent to κ(·,uι), ι ∈ In. See [10] for this low-complexity
strategy. The computational complexity of the proposed algo-
rithm and the related algorithms is presented in Table 2. The
low complexity version of the proposed algorithm is quite ef-
ficient since the number of selected coefficients to be updated
is typically s = 1 or s = 2.

4. NUMERICAL EXAMPLES

We compare the performance of the Φ-PASS II algorithm
with its non-sparse counterpart (i.e., λ = 0) and the sparse
QKLMS algorithm [16] in an application to noise cancella-

tion.3 The noise signal xn is assumed white and uniformly
distributed within the range of [−0.5, 0.5], and the distorted
noise signal is given by

dn = xn − 0.3dn−1 − 0.8dn−1xn−1 + 0.2xn−1 + 0.4dn−2.

The original noise xn is predicted as a function of un :=
[dn, dn−1, · · · , dn−L+2, x̂n−1]

T ∈ U ⊂ R
L (L = 12),

where x̂n−1 := ϕn−1(un−1) is a replica of xn−1. We em-

ploy the Gaussian kernel κ(x,y) := exp(−ζ‖x − y‖2) for
ζ = 6.

For the proposed algorithm, the full version s = rn and
the low-complexity version s = 1 are tested and the data-
reusing factor is set to p = 8. The step size is set to μn = 0.7
for the proposed algorithms and η = 0.3 for Sparse QKLMS.
(The step size is chosen so that each algorithm attains the
best performance.) The regularization parameter is set to λ =
3× 10−5 for the proposed algorithms, and γ = 3× 10−6 for

Sparse QKLMS. The weight of the l1 norm is set to w
(n)
j :=

3FOBOS-KLMS did not perform well in this experiment. This is because
the off-diagonal entries of Gn are non-negligibly large and the error surface
for FOBOS-KLMS is unfavorable such as the one depicted in Fig. 1(c).
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Fig. 2. Simulation results.

1/(|h(n)
j |+ε), j ∈ Jn, for ε := 1×10−4. For Sparse QKLMS

algorithm, the regularization parameter for the kernel matrix
Kn is set to λ = 1 × 10−4. Uniform weights are used; i.e.,

ν
(n)
ι = (min{p, n+ 1})−1

for all ι ∈ In, and the error bound
is set to ρ = 0. The coherence threshold σ is set to σ = 0.75
for all algorithms. For Sparse QKLMS, those dictionary el-
ements whose coefficients have their absolute values smaller
than 0.01 are discarded at each iteration.

Fig. 2(a) depicts the MSE learning curves and Fig. 2(b)
the time evolution of the dictionary size. It can be seen that
the performance of Proposed (s = 1) is almost identical to
that of Proposed (λ = 0, s = 1) while it maintains a signifi-
cantly small dictionary size. Moreover, the average complex-
ities of Proposed (s = 1) and sparse QKLMS are 1820 and
10959, respectively. Proposed (s = 1) outperforms Sparse
QKLMS despite its lower complexity as well as its smaller
dictionary size.

5. CONCLUSION

We proposed the Φ-PASS II algorithm which adaptively re-
fines the dictionary by a shrinkage operator and suppresses
the estimation errors by parallel projections with past data
reused. We showed a monotone approximation property of
the proposed algorithm under conditions. The algorithm was
derived based on the isomorphism between the dictionary
subspace and a Euclidean space, which, together with the
restricted gradient, provides a basis to clarify the relation of
the RKHS and parameter-space approaches. The numerical
examples showed the efficacy of the proposed algorithm.
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