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ABSTRACT
We propose a maximal figure-of-merit (MFoM) learning framework
to directly maximize mean average precision (MAP) which is a
key performance metric in many multi-class classification tasks.
Conventional classifiers based on support vector machines cannot
be easily adopted to optimize the MAP metric. On the other hand,
classifiers based on deep neural networks (DNNs) have recently
been shown to deliver a great discrimination capability in auto-
matic speech recognition and image classification as well. However,
DNNs are usually optimized with the minimum cross entropy cri-
terion. In contrast to most conventional classification methods,
our proposed approach can be formulated to embed DNNs and
MAP into the objective function to be optimized during training.
The combination of the proposed maximum MAP (MMAP) tech-
nique and DNNs introduces nonlinearity to the linear discriminant
function (LDF) in order to increase the flexibility and discriminant
power of the original MFoM-trained LDF based classifiers. Tested
on both automatic image annotation and audio event classification,
the experimental results show consistent improvements of MAP on
both datasets when compared with other state-of-the-art classifiers
without using MMAP.

Index Terms— Nonlinearity, average precision, deep neural
networks, maximal figure-of-merit

1. INTRODUCTION

During the process of designing a classifier, density based meth-
ods use joint probability density functions to minimize the Bayes
risk, e.g., Gaussian mixture models (GMMs) [1] and hidden Markov
models (HMMs) [2]. On the other hand, discriminant based methods
define discriminant function to evaluate class scores and learn their
parameters using certain optimization criteria [3]. Hybrid meth-
ods by combining these two approaches have also been explored
[4]. Methods based on discriminative training (e.g., support vec-
tor machines [5]) are more flexible since they link data directly to
the corresponding labels without modelling the relationship between
the feature space and parameter space. However, it is always an in-
teresting issue on how to train such models to optimize the desired
performance of a task. Support vector machines (SVMs) maximize
the minimum margin between samples and the separation hyper-
plane described by a linear discriminant function (LDF) [5]. Maxi-
mum mutual information (MMI) [6] maximizes the mutual informa-
tion among competing classes, while minimum classification error
(MCE) [3] can directly minimize the empirical classification error
of the training data.

A performance gap between the training and testing data has
been observed in practice making it hard to design a proper discrim-

inative training (DT) criterion. SVMs have shown some general-
ization abilities [5], but another group of methods would suggest
to directly optimize the desired performance metric used in test-
ing. Among them, an interesting example is maximal figure-of-merit
(MFoM) [7], which can be used to optimize precision, recall, F1-
measure and receiver operating characteristic (ROC) as well [7, 8].
The MFoM learning approach has been successfully used in text cat-
egorization, automatic image annotation and audio event classifica-
tion [8, 9]. The key idea of MFoM is to approximate the perfor-
mance metric with a differentiable function, so that gradient based
optimization methods can be properly applied. Similar to the ROC
metric, we propose an approach to maximizing AP, which is widely
used in multi-class classification. The difference between the ROC
metric and the AP metric is that in AP every positive sample is an op-
erating point with weight related to its normalized rank which turns
out to be a difficult metric to optimise [10]. Compared with the
AP approximation method used in [10], our proposed approach uses
differentiable functions to estimate ranks so that the gradient of the
objective function can be calculated directly.

Another problem of the conventional MFoM approaches is that
it is hard to introduce nonlinearity to the discriminant function.
There are mainly two branches of methods to deal with the problem.
One is to use nonlinear discriminant function like quadratic func-
tions [11], and the other is to apply kernel functions to map features
to high dimension Hilbert space [12]. Using a nonlinear discrimi-
nant function will make the objective function hard to solve, while
kernelization approaches need to deal with the increased dimensions
when there are hundreds of thousands of training samples. On the
other hand, deep neural networks with discriminative training are
widely used in automatic speech recognition (ASR) [4, 13, 14].
DNNs introduce nonlinearity naturally and are able to handle mas-
sive data sets [13]. Therefore in this study we propose to introduce
AP based MFoM to discriminative training of DNN based classi-
fiers. DNNs in massive data problems use random part of data on
each training step. MFoM needs an approximation of the perfor-
mance metric on training data, and in most cases it is hard to have an
accurate approximation based on a small subset of the training data.
However, in our experiment, ranking based performance metric can
properly deal with the problem, so that stochastic gradient descent
learning methods on DNNs can work properly.

2. GENERAL FORMULATION OF MFOM TRAINING

Let us considering a multi-class classification problem with M
classes {Ck|k = 1, · · · ,M}. Suppose the training dataset is
X = {xi ∈ Rn|i = 1, · · · , N}, and L = {yi|i = 1, · · · , N}
is their label set, where yi ⊂ {1, · · · ,M}. Every data must be
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assigned to at least one class, X =
⋃M
k=1 Ck. For multi-label

problems, total size of all Ck’s must be greater than that of X .
Assume for each class Ck, a discriminant function is defined as
gk(x;ωk), where ωk are parameters for the class, and they be-
long to parameter set Ω = {ω1, · · · ,ωM}. The predicted class
of data x is C̃y = argmaxy gy(x;ωy). If there are multi-labels,
first several candidates should be considered or a threshold can
help. Normally, LDF is adopted, which means gk(x;ωk) = ωTk x̂,
where x̂ = (x; 1) makes the notation of weights and bias in LDF
consistent.

To qualify the classification performance, a misclassification
measure [3] is defined for each class Ck as

dk(x) = −gk(x;ωk) +
1

η
ln

 1

M

M∑
j 6=k,j=1

eηgj(x;ωj)

 , (1)

where η is a smoothing constant. A greater η will make competing
classes, which are summed up in the right side of Eq. (1), with high
scores have greater influence on the misclassification measure.

The sign of the misclassification measure indicates whether the
predicted class is correct or not. A positive sign means the prediction
is incorrect, and vice versa. Furthermore, a sigmoid function is em-
bedded to estimate the count on misclassified samples. That function
is always called loss function [3], lk(x) = 1

1+e−αkdk(x)+β , where
αk and β are two parameters controlling the active region of the 0-
1 approximation. αk can be estimated based on the distribution of
dk(x) [15], and in this paper we take β = 0.

3. FORMULATION OF MMAP

The loss function defined in last section can only deal with misclas-
sification count, while in the calculation of AP, we also need an es-
timation of the ranks of data samples. In [16], gradient ∇ωAP is
got by estimating ∂APk

∂dk(xi)
∇ωdk(xi) and summing over all xi. It

was claimed to be efficient, but a lot of smoothing would be neces-
sary. Suppose s = g(x) is the score of a data sample, where g(·) is
gk(·;ωk) when we are calculating scores for class Ck. The discrete
form of AP for class Ck is

APk =
1

|Ck|
∑

xi∈Ck

rank(si; {sj |xj ∈ Ck})
rank(si; {sj |xj ∈X}) , (2)

where |Ck| denotes the cardinality of set Ck, and rank(s;S) is the
rank of s in set S.

A smoothed pair-wise rank function [8] can be used to estimate
ranking relation between two samples xi and xj , and it has the form

rk(xi,xj) =
1

1 + e−αk[dk(xi)−dk(xj)]
. (3)

If si is ranked higher than sj , rk(xi,xj) will be less than 0.5 and
approaches 0 as either αk or dk(xi)−dk(xj) becomes pretty large.
And summing Eq. (3) over all xj in set Ck will give an estima-
tion of rank(si; {sj |xj ∈ Ck}) ≈

∑
xj∈Ck

rk(xi,xj), while
rank(si; {sj |xj ∈X}) ≈

∑
xj∈X rk(xi,xj).

ForM -class classification, we will generally use the mean of all
APs of different classes to evaluate the overall performance. A reg-
ularize term could be added to extend generalization ability. In this
point, to maximize mean-AP is to solve the following constrained

optimizing problem,

min − 1

M

M∑
k=1

APk (4)

s.t.
1

2
‖ωk‖22 = 1, k = 1, · · · ,M.

Applying a penalty term ρ, we can transform (4) to a non-constrained
programming problem, f(Ω) = − 1

M

∑M
k=1APk+

ρ
2

∑M
k=1‖ωk‖

2
2.

We adopt L-BFGS to solve the optimization problem. L-BFGS
is a gradient based convex programming algorithm being widely
used in many areas [17, 18, 19]. It has been shown that L-BFGS
can work on non-convex problems as well [20]. Replace rank terms
in f(Ω) with their approximation, we can get the gradient of f(Ω)
by taking partial derivative of it as in Table 1.

4. MMAP ON NEURAL NETWORKS

To apply our proposed MMAP method on deep neural networks (will
be denoted as MMAP-DNN), we shall change the form of our equa-
tions in some degree. Neural networks are composed of input, output
and hidden layers. Normally, in deep belief networks (DBNs) the
output layer of the neural network will adopt softmax functions as
the final output units to have an estimation of posterior probabilities,

P (Ck|x) ≈
ezk∑M

k
′
=1
ezk′

, (5)

where zk′ ’s are values fed to softmax function of class Ck. If we
think of the output of the last hidden layer as new features mapped
from the original data space, and let us denote them as u and U =
{ui ∈ R+

m|i = 1, · · · , N}, then zk is the inner product of u and the
weight w times a constant, zk = ηwT

k u, which has a similar form
to LDF. Furthermore, the final output of the softmax functions can
be linked to an exponential form of the misclassification measure by

d
′
k(z) =

1

η
ln

(
1

M − 1

(
1

softmax(z, k)
− 1

))
, (6)

where z = (z1, · · · , zM )T , and softmax(z, k) is defined as the
right side of Eq. (5). Since we only care about the sign of misclassi-
fication measure, we shall see that η can be combined to parameter
vector w’s. Note that the mapping from x to u, Rn 7→ Rm+ , is a
nonlinear mapping. Thus by adding our MMAP on neural network,
we improve the discriminant power of neural network, and intro-
duce a nonlinear space transform to original MFoM approach. The
smoothed pair-wise rank function, in neural network, would be

r
′
k(zi,zj) =

1 +( 1
softmax(zj ,k)

− 1

1
softmax(zi,k)

− 1

)αk
η

−1

. (7)

In general, DNNs will be trained using a random subset of the train-
ing data at every iteration. We will not be able to estimate αk on
each iteration. If we set αk to be η, αk and η will no longer exist in
Eq. (7). Actually, by doing so, we force neural network to learn ηw
instead of w where η can be different from class to class.

During the back-propagation stage of DNN training, the gradient
on z should be estimated. In case of the cross-entropy (CE) criterion,
in which DNNs are trained to minimize CE between output units, the
gradient per sample is the absolute error of the output. In our MMAP
training, the gradient for each data x is not just related to the output
error but also correlated with other data samples. To improve the
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Table 1. Discriminant training target functions and their gradients
Objective Gradient

MCE
M∑
k=1

N∑
i=1

vk(xi)lk(xi)
M∑
k=1

N∑
i=1

vk(xi)∇ωlk(xi), vk(xi)=

{
1 ,xi∈Ck
−1,xi /∈Ck

MFoM-µF1 −
2
M∑
k=1

∑
xi∈Ck

(1−lk(xi))

M∑
k=1

(
|Ck|+

N∑
i=1

(1−lk(xi))
) M∑

k=1

N∑
i=1

(
B
A2 − vk(xi)

A

)
∇ωlk(xi),

A=
M∑
k=1

(
|Ck|+

N∑
i=1

(1−lk(xi))
)

B=
M∑
k=1

(
|Ck|−

N∑
i=1

vk(xi)(1−lk(xi))
)

MMAP − 1
M

M∑
k=1

∑
xi∈Ck

1
|Ck|

∑
xj∈Ck

rk(xi,xj)∑
xj∈X

rk(xi,xj)
1

2M

M∑
k=1

N∑
i=1

N∑
j=1

(
Qk,i
P2
k,i
− vk(xi)

Pk,i

)
∇ωrk(xi,xj),

Pk,i=|Ck|
N∑
j=1

rk(xi,xj)

Qk,i=|Ck|
N∑
j=1

vk(xj)rk(xi,xj)

MMAP-DNN − 1
M

M∑
k=1

∑
xi∈C

′
k

1

|C′
k
|

∑
xj∈Ck

r
′
k(zi,zj)∑

xj∈X
r
′
k
(zi,zj)

1
2M

M∑
k=1

N
′∑

i=1

N
′∑

j=1

(
Q
′
k,i

P
′2
k,i

− vk(xi)

P
′
k,i

)
∇zr

′
k(zi,zj),

P
′
k,i=|C

′
k|
N
′∑

j=1
r
′
k(zi,zj)

Q
′
k,i

=|C′
k
|
N
′∑

j=1
vk(xj)r

′
k
(zi,zj)

generalization and decrease the complexity, DNNs are trained by
applying stochastic gradient descent with momentum [21] on some
mini-batches of the training set. In each iteration, only subsets of M
classes’ sets might be chosen. Let us assume the size of the mini-
batch isN

′
and denote the subset ofCk asC

′
k, which can even be ∅.

Though mini-batch methods show great power on DNN training, AP
estimated on mini-batch will be different from the exact AP of whole
data set. It could be a problem if we demands accurate estimations
of AP. But if we consider APs as a contributing part of the weight
assigned to the gradient of each data sample, it comes out with non-
accurate AP yet we can still give greater weights to positive samples
with low scores, and give smaller weights to positive samples with
high scores. Thus low ranked positive samples are more likely to
increase their ranks at the next iteration, while high ranked ones will
not grow too fast. Similarly, negative samples will be forced to low
ranks by different weights based on their observed ranks.

5. EXPERIMENTS AND RESULTS

We test our proposed algorithm on data sets of auto image annota-
tion (AIA) and audio event classification problems. We use Corel 5k
for the first part which has about 5000 images labelled with 374 key
concepts that each image might be labelled with more than one key
word. It is divided into training and testing sets with 4500 and 500
samples, respectively. 44 out of 374 key words that occur more than
100 times in the training set were selected in our experiment, and
they all appear in the testing set. Thus the real size of the training
set is 4350 and that of the testing set is 485. For the second part,
we use Buffalo 3k, which is an expansion of the data set used in
[22] used for video event classification and collected from the inter-
net. It has 3056 video clips, among them 1327 are labelled with 30
event notations. Each clip can have just one label. In our experi-
ment, only the audio track of the data set is used, thus we dropped
out 17 clips without audio tracks. We used support vector machines

Cross-Entropy

…

…

…

…

…

…

Dropout Cross-Entropy Discriminant Training

…

…

…

Fig. 1. Training neural network of audio event classifier

trained by LIBSVM [23] and deep neural networks trained using the
Kaldi tool kit [24] as our baselines. In our experiments, we train all
DNNs without pre-training since pre-training has been shown to be
not always necessary [21].

5.1. Experimental Setup and Task Description

5.1.1. AIA Data

Features of Corel 5k were extracted using the methods given in [25].
A dimension of 600 was adopted to create both texture and colour
histogram features. Base MMAP models for each of the two dif-
ferent features were first trained using method introduced in section
3, and their output for the 44 classes were then combined to 88-
dimension vectors to be used in late fusion. We use a L2 penalty of
0.001 in training of the texture and colour models, and that of 0.005
in fusion model training. On the other hand, to build the MMAP-
DNN models, one DNN for each of the two different features was
first trained using the CE criterion and followed by one fusion neural
network fed with their outputs. Then the MMAP criterion was fur-
ther used to train the fusion model with the initial parameters learnt
from CE optimization. Two high level feature models both have two
hidden layers with 1024 hidden nodes, while the fusion model has
one layer of 256 hidden nodes. To compare the performance on dif-
ferent features, we also trained models for each feature type with the
MMAP criterion, but they were not used in the fusion step. A batch
size of 32 was used, and we set the learning rate to be 0.04 with a
momentum factor 0.9 and L2-penalty 5 × 10−6 in DNN training.
For the SVM baseline, we used RBF kernels. The fusion step was
the same as that for our MMAP model that the output scores for both
features were concatenated as a new feature for the fusion model.

5.1.2. Audio Event Classification Data

On Buffalo 3k, we split the data set randomly into two subsets, with
678 training and 632 testing clips. We extract the 39-dimension
mel-frequency cepstral coefficients (MFCCs) on 25 ms windows at
a frame rate of 10 ms. K-means clustering was used to build a code-
book of size 1024. Then we created feature using bag-of-word sim-
ilar to [26], which will give us a 1024 dimension feature vector per
clip. Those feature vectors were then normalized by dividing every
element in a vector with their sum. We have the MMAP models and
SVMs trained on the 678 training clips and tested on the remaining
632 clips. In linear MMAP training, L2-penalty was 0.002. In the
MMAP-DNN model, we used 2 hidden layers each with 512 hidden
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Fig. 2. Mean average precision of all classes in Buffalo 3k

nodes. All models were trained as multi-class classifiers. It could
be a really difficult task to train a 30-classes classifier with only 678
samples, especially for DNNs.

To reduce the over-fitting problem, an L2 penalty was used and
we also adopted the mini-batch and drop-out [27] mechanism. In
the stage of training DNNs to minimize classification errors, no L2-
penalty was used but the momentum factor was set at 0.91. In the
stage of drop-out training, the drop-out rate was 0.5. And in the
discriminative training stage, we used a 1 × 10−4 L2-penalty and a
0.9 momentum factor. The learning rate was set to 0.04 in the CE
stage, and then set to 0.004 in the other two stages.

5.2. Results and Discussion

Results of our experiments are listed in Table 2 where it shows the
mean average precision for the two data sets in the two rightmost
columns. We compare SVM with the RBF kernel, DBN with the CE
criterion, linear MMAP, MMAP embedded DNN, and a late fusion
of the output of SVM and MMAP-DNN denoted as SVM+MMAP-
DNN. The proposed MMAP method obtains a relative 6.5% and
19% gains in MAP when compared with the SVM systems. Neu-
ral network trained to minimize errors has the worst performance in
Corel 5k, it could be caused by multiple labels and insufficient train-
ing data. However, our proposed method improves the result of neu-
ral network by 26% in Corel 5k. On Buffalo 3k, DBN with a relative
large node size learnt pretty well and MMAP doesn’t bring much
gain to it. It seems DBN, MMAP and MMAP-DNN shows similar
MAP, but their performance on each class are different, which can
be reflected by the top 5 concepts shown in Table 3 that are different
between SVM and DNN. The improved fusion results shown in the
bottom row in Table 2 clearly indicate the complimentary nature.

Table 2. MAP comparison for different classifiers
Corel 5k Buffalo 3k

SVM 0.356 0.161
DBN 0.301 0.189
MMAP 0.346 0.191
MMAP-DNN 0.379 0.195
SVM+MMAP-DNN 0.432 0.201

In Figure 2, bars show MAPs of different classes and their corre-
sponding classifiers, and lines indicate the number of training sam-
ples in each class showing on the right-side vertical axis. We can
find that the performance of different classes is somewhat correlated
with the training sample size in that class. Classes with more train-
ing samples are always able to get a better performance. However,
MMAP is able to give an extra bonus gain to some classes that have
only few training samples, e.g., the write and sew classes have less
than 20 training samples and MMAP still attains a 0.25 average pre-
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Fig. 3. Performance on Corel 5k

Table 3. Top 5 words with best performance
SVM DBN MMAP MMAP-DNN

jet ocean ocean ocean
plane horses horses horses

Corel 5k tracks polar cat polar
birds tiger bear bear
ocean sun birds tiger
repair appl. repair appl. meeting repair appl.
parkour meeting repair appl. meeting

Buffalo 3k meeting flash mob clean appl. parkour
flash mob land fish parkour board trick
proposal parkour land fish flash mob

cision on these classes. DBN shows a great performance in the dog-
show, repair appliance and birthday categories when compared with
other methods. These events all contain specific sounds, and DNN
is capable of reproducing some characterized samples even they are
only a few. MMAP-DNN usually has a combinational performance
of MMAP and DBN. The only case SVM outperforms is parade
class, which contains a lot of different sounds.

6. SUMMARY

In this paper, we have presented a technique to maximize the mean
average precision of multi-class multi-label classifiers. By further
embedding DNNs into the MAP objective function we gain a flexi-
bility to use nonlinear classifiers to improve the discriminative power
of conventional linear classifiers. Experiments on two different data
sets show an up to 25% relative MAP improvement. In the future, we
will study problems with large size training sets and ways to further
improve the MMAP-DNN framework.
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