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ABSTRACT

Graphical models are powerful tools to describe complex sys-

tems. Especially sparse graphical models are currently en

vogue, as they allow us to infer network structure from mul-

tiple time series (e.g., functional brain networks from multi-

channel electroencephalograms). So far, most of the litera-

ture deals with stationary time series, whereas real-life time

series often exhibit non-stationarity. In this paper, techniques

are proposed to infer graphical models from piecewise sta-

tionary time series; first change point are detected in the time

series, and then graphical models are inferred for each station-

ary segment. Specifically, a low-complexity algorithm based

on Pruned Exact Linear Time method is proposed to identify

change points. Copula Gaussian graphical models (with and

without hidden variables) are then generated for each station-

ary segment. The crux of the proposed approach is that it de-

termines the number and location of the change points as well

as the graphical models in a fully automated manner. Results

for both synthetic data and scalp electroencephalograms of

epileptic seizure patients are provided to validate the model.

Index Terms— change point detection, PELT, Gaussian

copula, graphical model, functional network, seizure

1. INTRODUCTION

Graphical models have rich modeling capabilities and great

computational efficiency [1, 2]. By means of graphical mod-

els, the statistical relations between numerous stochastic

variables can be captured as a sparse network. For instance,

functional brain networks can be inferred from electroen-

cephalograms using graphical models. Most of the literature

on Graphical models deals with Gaussian variables [1, 2].

However, recently developed Gaussian copula graphical

models enable us to tie any kind of marginal distributions

(both Gaussian and non-Gaussian) together to form a joint

distribution [3, 4, 5, 6, 7, 8]; the precision matrix (inverse

covariance) in the latent Gaussian layer describes the inter-

action between the variables in a compact manner, yielding

efficient inference algorithms. Gaussian copula graphical

models have been applied in such diverse areas as computa-

tional biology [3, 4] and neuroscience [5], geophysics [6] and

extreme events analysis [7], and sociology [8].

So far, most literature on network inference via graphi-

cal models focuses on stationary data. However, real data are

often non-stationary, and statistical models designed for sta-

tionary data may not yield accurate results. For example, dur-

ing epileptic seizures, functional brain networks are shown to

evolve through a sequence of distinct topologies [9]. Infer-

ring such evolving networks in the framework of graphical

models has received little attention until now. A reasonable

approach is to detect change points, and then infer graphical

models in the stationary segments between the change points.

Xuan et al [10] employed the Bayesian change point detec-

tion approaches: they adopt a geometric prior on the time

segment lengths, and then iterate between MAP segmentation

and graphical model inference. The main restriction, how-

ever, is that the graph for all segments must be decomposable.

On the other hand, a greedy binary segmentation scheme is

proposed in [11]. A change point is inserted such that the BIC

of the two graphical models of the data before and after the

change point is minimized; this procedure is repeated until no

further splits reduce the BIC score. Unfortunately, besides the

high computational complexity, the binary segmentation can

be misleading and overestimate the number of change points,

as pointed out in [12]. To address this concern, dynamic pro-

gramming is applied in [13], resulting in joint estimation of

all the change points. Unfortunately, the method has com-

putational complexity of order O(n3) in the number of fixed

points n, which is impractical for most real-life time series

with tens or hundreds of change points. Another limitation

of the aforementioned methods is the assumption of Gaussian

distributed data, which is not always fulfilled in practice.

In this paper, we aim to establish Gaussian copula graph-

ical models for non-stationary, in particular, piecewise sta-

tionary time series. Since those graphical models rely on

copulas, they are applicable to non-Gaussian data (cf. [3, 4,

5, 6, 7, 8]). In order to reduce the computational complex-

ity, we disentangle the process of change point detection and

graphical model inference. Specifically, we first detect the

change points by minimizing a cost function defined on co-

variance matrix using low-complexity Pruned Exact Linear

Time (PELT) method [14], and next learn the graphical model

based on the covariance of each stationary time segment. The

procedure also infers the number of change points in an auto-

mated fashion. Numerical results for both synthetic and real

data show that the proposed method provides an effective and

efficient tool to identify change points and infer networks.
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This paper is structured as follows. In Section 2, we

briefly introduce Gaussian copula graphical models (with

hidden variables) for stationary data. In Section 3 we ex-

tend those models to piecewise stationary data. In Section 4

we present results for synthetic and real data, validating the

proposed model. We offer concluding remarks in Section 5.

2. COPULA GAUSSIAN GRAPHICAL MODELS

2.1. Standard Copula Gaussian Graphical Models

Let the observed non-Gaussian variables and hidden Gaus-

sian variables be Y1, . . . , YP and Z1, . . . , ZP respectively. A

Gaussian copula graphical model is defined as [3, 15]:

Z ∼ N (0,K−1) Yk = F−1
k (Φ(Zk)), (1)

where K is the precision matrix whose inverse (the covari-

ance matrix) has normalized diagonal, Φ is the CDF (cumu-

lative distribution function) of the standard Gaussian distribu-

tion, and Fk is the CDF of Yk. It is straightforward to prove

that the graphical model structure is characterized by K, i.e.,

K(i, j) = 0 if and only if the edge (i, j) is absent [3]. Thus,

the graphical model can be inferred using the method called

graphical lasso (glasso) [16] by solving the convex problem:

K̂ := argmin
K≻0

tr(SK)− log detK + λ‖K‖1, (2)

where S is the empirical covariance of Z. Note that the regu-

larization parameter λ needs to be selected carefully in order

to recover the true precision matrix. As in [4], we apply the

BINCO method [17] to select the parameter λ.

2.2. Copula Gaussian Graphical Models with Hidden

Variables

The aforementioned model is useful only when all the rel-

evant variables are observed, whereas in many applications

some of them may be hidden or unobserved. Consequently,

in earlier work [4] we proposed Gaussian copula graphical

models with hidden variables (HVGM), which we will briefly

explain in the following. Suppose in the Gaussian latent layer,

each Zo k is associated with an observed non-Gaussian vari-

able Yk and there exist several hidden variables Zh that are

not associated with observed variables. The joint precision

matrix K(o h) of both Zo and Zh is given by:

K(o h) =

[

Ko Ko,h

Kh,o Kh

]

. (3)

According to Schur complement, the marginalized precision

matrix K̃o of Zo can be written as:

K̃o = Ko −Ko,hK
−1
h Kh,o = Ko − L, (4)

with product matrix L = Ko,hK
−1
h Kh,o. Those two com-

ponents have the following properties [18]: Ko is the suppos-

edly sparse conditional precision matrix of Zo, conditioned on

Zh; the product matrix L summarizes the effect of marginal-

ization over the hidden variables. The rank of that matrix

equals the number of hidden variables Zh. Resulting from the

subtraction, K̃o is dense. The graphical lasso [16] and stan-

dard copula Gaussian graphical model [3] both would yield

dense graphs since they infer K̃o. Instead, Ko and L may be

recovered by solving the convex relaxation [18]:

(K̂o, L̂) = argmin
Ko,L

tr((Ko − L)So)− log det(Ko − L)

+ λ(γ‖Ko‖1 + tr(L)), (5)

where So is the empirical marginal covariance of Zo. To re-

cover the correct matrices Ko and L, the parameters λ and

γ need to be chosen appropriately, which can be settled via

stability selection [19]. We refer to [4] for more details.

3. CHANGE POINT DETECTION

In this section, we address the problem of detecting change

points in piecewise stationary multivariate time series. Specif-

ically, we aim to detect changes in the statistical dependence

(a.k.a. connectivity or network structure) among the time se-

ries. The data between the change points is assumed to be

stationary, and will be modeled by copula Gaussian graphical

models. Let us assume that we have an ordered sequence of n

samples for each of the p variables, y
(i)
k , where i = 1, · · · , n

and k = 1, · · · , p. We wish to infer an unknown number m
of change points τ1:m = (τ1, · · · , τm). Each change point is

an integer between ℓ and n − ℓ, where ℓ is minimum length

of one segment. We further define τ0 = 0 and τm+1 = n,

and thus the m change points will split the data into m + 1

segments, where the kth segment is given by y
(τk−1+1:τk)
1:p .

As a first step, we transform the non-Gaussian observed

variables Yk into Gaussian latent variables Zk (associated

with the observed variables Yk), i.e., Zk = Φ−1(F̂k(Yk)).
We next solve the problem of identifying all the change

points together in the Gaussian latent layer. Concretely, we

minimize a cost function with a penalty on the number of

change points, as suggested in the literature [14, 20]:
m+1
∑

k=1

Lk

(

z
(τk−1+1:τk)
1:p

)

+ βm, (6)

where β is the cost associated with each change point, in or-

der to limit overfitting. The negative log-likelihood Lk is

defined as Lk(z
(τk−1+1:τk)
1:p ) = (τk − τk−1)/n log det(Sk),

where Sk is the empirical covariance of segment k. We apply

the Pruned Exact Linear Time (PELT) method [14] to effi-

ciently find the global minimum of (6). More specifically, let

Fm(t) denote the global minimum of (6) for data z
(1:t)
1:p and

let Tt = {τ : 0 = τ0 < τ1 < · · · < τm < τm+1 = t} be the

set of candidate change points. It therefore follows that:

Fm(t) = min
τ∈Tt

m+1
∑

k=1

[

L
(

z
(τk−1+1:τk)
1:p

)

+ β
]

= min
s

{

min
τ∈Ts

m
∑

k=1

[

L
(

z
(τk−1+1:τk)
1:p

)

+ β
]

+ L(z
(s+1:t)
1:p ) + β

}

= min
s

[

Fm−1(s) + L(z
(s+1:t)
1:p ) + β

]

. (7)

The expression (7) offers a recursion expressing the minimum

for data z
(1:t)
1:p in terms of the minimum for z

(1:s)
1:p for s < t.

As a result, (7) can be solved in turn for t = ℓ+ 1, · · · , n by
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finding the most recent change point s before t. In summary,

PELT is a dynamic programming procedure:

1. Initialize F (0) = −β. The set cp(t) of previous change

points at t ≤ ℓ is initialized as cp(t) = ∅, and the

set Rℓ+1 of candidate change points at t = ℓ + 1 is

initialized as Rℓ+1 = {0}.

2. Compute F (t) = minτ∈Rt
[F (τ) + L(z

(τ+1:t)
1:p ) + β]

and let τ∗ = argminτ∈Rt
F (t)

3. Update the set cp(t) of previous change points at time

t: cp(t) = cp(τ∗) ∪ τ∗.

4. Prune the set Rt by removing {τ ∈ Rt : F (τ) +

L(z
(τ+1:t)
1:p ) > F (t)}. If t ≥ 2ℓ − 1, then update

Rt+1 of candidate change points at the next time po-

sition t+ 1: Rt+1 = Rt ∪ {t+ 1− ℓ}.

5. Return to Step 2 if t < n and increase t by 1.

The resulting cp(n) is the optimal set of change points. Note

that Step 4 shrinks the set of candidate change points by dis-

carding those τ that can never be minima in the future itera-

tions as proven in [14]; such procedure successfully removes

computations that are irrelevant to obtaining the final set of

change points and accelerates the algorithm. Under certain

conditions, the computational complexity is linear in n [14].

Another issue with solving (6) is the selection of regu-

larization parameter β, which determines the final number of

change points. However, there is no uniform rule to com-

pute β for all kinds of data. An adaptive method to deter-

mine the number of change points is introduced in [20], which

keeps increasing the number of change points until the nega-

tive log-likelihood of the entire time series ceases to decrease

significantly. In the example of Fig. 1(a), the optimal number

change points is three, as the negative log-likelihood starts de-

creasing more slowly for larger number of change points. We

modify the approach to choose β in the same spirit.
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Fig. 1. Adaptive regularization selection.

Let L =
∑m+1

k=1 Lk and define a general penalty f(m),
which equals m in our case. It is apparent that the esti-

mated number of change points m̂(β) is a piecewise constant

function of β. As such, if m̂(β) = a, L(a) + βf(a) <
minb 6=a(L(b) + βf(b)). Therefore, β satisfies the following

condition [20]:

max
b>a

L(a)− L(b)

f(b)− f(a)
< β < min

b<a

L(b)− L(a)

f(a)− f(b)
. (8)

In the example of Fig. 1, for β such that m̂(β) = 3, L(3) −
L(4) < β < L(2)−L(3). There hence are ordered sequences

1 = m1 < m2 < ... and ∞ = β0 > β1... defined as [20]:

βi =
L(mi)− L(mi+1)

f(mi+1)− f(mi)
, i ≥ 1, (9)

such that m̂(β) = mi, ∀β ∈ [βi, βi−1) (as marked the red

circles in Fig. 1(b)). To find the m for which L ceases to

decrease significantly, we need to look for a break in the slope

of the function L(f), which is defined by β according to (9).

Therefore, the change of the slope is determined by the length

ℓmi
of the interval [βi, βi−1). As a result, the regularization

selection procedure can be executed as follows:

1. Select an arithmetic sequence of β = (β1, β2, · · · )
(black plus signs in Fig. 1(b)). In practice, we set the

interval between two β values to be c log(n)p(p +
1)/4n, where c = 0.02 is a user-defined constant and

log(n)p(p+1)/4n is the regularization parameter when

Bayesian Information Criteria (BIC) is employed for

regularization selection.

2. For each βi, estimate the number of change points

m̂(βi) by solving (6) using PELT method.

3. Compute the length ℓmj
of the interval by counting the

number of βi that generates mj change points, which is

represented by the length between two circles with the

same number of change points in Fig. 1(b).

4. Choose the smallest value of β such that ℓmj
≫ ℓmk

,

for k > j. In Fig. 1(b), as an example, β corresponding

to ℓm̂(β)=3 is optimal since ℓm̂(β)=3 ≫ ℓm̂(β)=4.

Once we obtain the optimal segmentation of the time series,

we can learn graphical models based on the empirical covari-

ance Sk for each time segment. Here we consider copula

Gaussian graphical models without and with hidden variables,

which are inferred by solving (2) and (5) respectively.

4. NUMERICAL RESULTS

In this section, we validate the proposed model on both syn-

thetic and real data.

4.1. Synthetic Data

We generate 100 25-dimensional data sets with 2220 non-

Gaussian samples for each variable. The common true values

of change points are (661, 1561, 1861). In order to assess both

the copula Gaussian graphical models with and without hid-

den variables, the first half of 100 data sets does not contain

hidden variables while the other half does.

We first test the accuracy of change point detection.

Specifically, we benchmark the proposed copula PELT method

with adaptive regularization selection (denoted as “CPELT-

A”) against three other approaches: copula PELT method

with the regularization parameter selected via BIC (denoted

as “CPELT-B”), the original PELT method with adaptive

regularization selection (“PELT-A”), and the original PELT

method with BIC (“PELT-B”). The results are listed in Ta-

ble 1, where we show the distribution of the detected number

of change points. We also report the mean absolute error

(MAE) between the estimated position of change points and

the ground truth, for the cases where the correct number of
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Fig. 2. Results of functional networks resulting from graphical models without hidden variables (a)-(g) and with hidden vari-

ables (h)-(n) (with the vertical lines denoting the onset and end of the seizure)

Table 1. Comparison of different methods for accuracy of

change point (cp) detection

Methods
Distribution of detected cp no.

MAE (cp no. = 3)
0 1 2 3

CPELT-A 0% 0% 0% 100% 1.4

CPELT-B 100% 0% 0% 0%

PELT-A 0% 31% 1% 68% 2.8

PELT-B 91% 9% 0% 0%

change points is inferred. Clearly, the proposed CPELT-A

method greatly outperforms other methods, reliably identi-

fying the number and the position of change points. On the

other hand, CPELT-B and PELT-B seriously underestimate

the number of change points; BIC does not seem to be suit-

able here for regularization selection. The PELT-A method

can often detect the correct number of change points (in 68%

of the cases), but the inferred position of change points is

not as accurate compared to CPELT-A. We also validated

the graphical models inferred from the stationary segments

between change points obtained from CPELT-A. From our

results (not shown here for the sake of brevity), we observe

that the proposed methods can reliably recover the true graph

(precision matrices generated in Step 1), as reported in [4, 8].

4.2. Real Data

We now apply the proposed model to scalp electroencephalo-

grams (EEG) recorded during epilepsy seizures [21]. The

EEG time series were collected from 23 pediatric patients

(5 males, ages 3-22; and 17 females, ages 1.5-19) with in-

tractable seizures, using the international 10-20 system at a

sampling frequency of 256 Hz. During the recordings, the pa-

tients experienced 173 events that were judged to be clinical

seizures by experts. Here, we randomly select five events and

extract EEG data starting 60s before seizure onset and ending

30s after seizure termination. The EEGs are band-pass fil-

tered with a digital 3rd order Butterworth filter between 3 and

40Hz. We then down sample the signal to retain one fourth of

all the samples, to limit the computational complexity.

The results are summarized in Table. 2. We observe that

the proposed method detects change points near the start

and end of seizures, as one would expect. Typically there is

change point within two seconds from the start or end of a

Table 2. Results for seizure data

No. True period Estimated results: change points and network density

1 60 76
change points 64.34 72.09 77.45 90.75

no. of edges (glasso) 142 106 104 101 130

no. of edges (HVGM) 34 12 40 23 23

2 60 109
change points 35.23 60.78 72.69 110.44

no. of edges (glasso) 140 131 111 119 126

no. of edges (HVGM) 18 50 18 33 29

3 60 100
change points 60.88 69.42 98.52 119.52

no. of edges (glasso) 146 108 149 135 125

no. of edges (HVGM) 25 26 28 33 33

4 60 123
change points 61.48 117.02 118.48 120.25 122.66 141.05

no. of edges (glasso) 137 135 59 48 52 106 91

no. of edges (HVGM) 23 34 32 3 22 50 24

5 60 142
change points 30.00 59.16 66.63 94.20 141.47

no. of edges (glasso) 104 90 62 105 123 114

no. of edges (HVGM) 16 30 16 19 54 19

seizure, indicating that the proposed method may be further

developed for detecting the onset and ending of seizures.

We also inferred the functional network in each stationary

time segment by using the Gaussian copula graphical mod-

els with and without hidden variables. As an illustration, we

show the networks without and with hidden variables for the

4th data set in Fig. 2. Kramer et al. [9] analyzed the dynamics

of functional networks through the entire seizure in intracra-

nial electrocorticogram (ECoG) recordings. They found that

the networks are dense at seizure onset and termination, but

sparse during the middle portion of the seizure. Interestingly,

although scalp EEG is more noisy than intracranial ECoG

recordings, the proposed method can find the same pattern as

observed in [9]. Moreover, the inferred number of stationary

segments for all 5 data sets are similar, implying that seizures

undergo characteristic progressions that can be stretched or

compressed in time, as assumed in [9]. Remarkably, in con-

trast to [9], the proposed method allows us to infer the number

and location of change points in an automated fashion.

5. CONCLUSIONS

An effective method is proposed to infer abruptly changing

network structures from piecewise-stationary time series. A

low-complexity PELT-based algorithm is introduced to detect

change points. Next graphical models (with and without hid-

den variables) are inferred for each stationary time segment.

Numerical results for synthetic and real data demonstrate the

utility of the proposed model.
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