
ML ESTIMATION OF MEMORYLESS NONLINEAR DISTORTIONS IN AUDIO SIGNALS

Flávio R. Ávila
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ABSTRACT

Many real-world signals are subjected to nonlinear distortions
that can be approximately modeled as memoryless and in-
vertible. In Audio applications, they are typical of magnetic
recordings but can also result of dynamic compression em-
ployed in vinyl recordings etc. Such an effect can be disturb-
ing to a modern audience which is used to higher quality ma-
terial. This paper proposes an iterative algorithm to maximize
the likelihood function of the distortion function parameters,
based solely on samples of the degraded signal, and then re-
cover the original signal. The method assumes the original
signal to be autoregressive and Gaussian in short sections—a
standard model for audio—and the nonlinearity to be time-
invariant throughout the signal, thus allowing the use of all
samples in the model estimation. Additionally, a simple and
time-efficient alternative technique to estimate the nonlinear
function is proposed; it can be used either as a fast and re-
liable stand-alone procedure or as a initialization routine for
the more sophisticated maximum likelihood approach. The
robustness of the proposed techniques is verified through ap-
plication to artificial and real signals nonlinearly distorted.

Index Terms— Nonlinear; Restoration; Maximum Like-
lihood; Gauss-Newton

1. INTRODUCTION

The restoration of nonlinearly distorted audio material is par-
ticularly challenging because of the generality of this kind of
defect. Successful attempts to address the reduction of memo-
ryless nonlinearities have been described for special contexts,
such as magnetic recorded movie soundtracks [1] and horn
loudspeakers [2], where simpler models are suitable.

This paper proposes a model-based statistical method to
identify a memoryless nonlinear distortion whose inversion
enables one to recover the original signal. The method as-
sumes the original signal to be piece-wise auto-regressive
with white Gaussian excitation, and the nonlinear curve to
be parameterizable by a polynomial expansion, which can
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model a wide range of distortions. An iterative algorithm
based on the Gauss-Newton method is implemented to find
the Maximum Likelihood (ML) of the unknown parameters.
In addition, an alternative simple and robust scheme to es-
timate the parameters, which can also be used as a starting
point for the iterative algorithm, is described. By assuming
the distortion function equals the identity around the origin,
and the signal to be Gaussian in short sections, this algorithm
first estimates the original signal variance, and then calculates
the nonlinear curve that would make the observed distribu-
tion of the degraded signal maximally consistent with the
expected distribution of the original signal.

After this Inroduction, Section 2 states the parametric
model adopted for both the audio signal and the nonlinear
curve. In Section 3, an identification technique that exploits
the expected distribution of audio signals is described. Sec-
tion 4 presents the calculation of the likelihood function for
the unknown parameters given the degraded audio samples,
and the corresponding ML solution using the Gauss-Newton
algorithm. In Section 5, the application of both algorithms
to some nonlinearly distorted signals shows their efficacy.
Finally, conclusions are drawn in Section 6.

2. MODELING THE NONLINEAR DISTORTION

A system is said to be memoryless when its output at a given
instant depends only on its input at that instant. In audio, a
usual memoryless nonlinear distortion has the form of a soft
clipping, illustrated in Fig. 1. The original signal xn is as-

en
A(z) = 1

1−∑P
i=1 aiz

−i

xn yn
xn

yn
f (xn)

Fig. 1. Audio signal corrupted by memoryless nonlinearity.

sumed to be generated by an all-pole filter A(z), supposed
constant in short time intervals, and excited by white Gaus-
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sian noise en—a model successfully applied to audio signals
in the restoration context [3]. The degradation is imposed
on the signal by a time-invariant and memoryless nonlinear
function f(.) assumed to be anti-symmetric, monotonically
increasing (thus invertible), and close to the identity around
the origin. Time-invariance assumption is justifiable if one
considers the behavior of the recording or reproduction sys-
tem that imposes the distortion to be fixed throughout time.

Since this model disregards noise (considered as negligi-
ble), the problem reduces to the estimation of the curve f(.),
or rather its inverse g(.), from which the original signal can
be readily obtained. As in [4, 5, 6], this function is modeled
as a polynomial expansion with unknown parameters mi:

xn = yn +m1yn
3 +m2yn

5 + . . .+mMyn
2M+1, (1)

where the even coefficients are null, so that g(y) = −g(−y),
and the linear term coefficient equals 1, so that g′(0) = 1.
The model order M is unknown, but chosen to be sufficiently
high so as to guarantee a good approximation of the curve.
Eq (1) can be written in vectorial form as x = y + Ym,
where m = [m1, . . . ,mM ]T , the element Yij of Y is given
by Yij = y2j+1

i with i ∈ {1, . . . , N} and j ∈ {1, . . . ,M},
and N is the number of samples in the degraded signal.

Audio signals can be regarded as stationary for short-
sections (typically 20-ms), during which both the statistics of
en and the coefficients a = {a1, . . . , aP } of its AR model can
be held fixed. In addition, for sufficiently high order P , the
excitation en can be taken as composed by i.i.d. zero-mean
Gaussian samples with unknown variance. Many practical
techniques segment the audio signal into fixed-length blocks
which are separately processed, thus taking advantage of the
stationarity assumption. The same approach is adopted here:
the signal is divided into B L-length blocks. In a given block
j, signal samples are denoted as x(j), AR parameters as a(j),
and the excitation variance as σ2(j)

e . The coefficient-vector
m of the nonlinear curve is assumed constant throughout the
signal, thus affecting all samples the same way.

3. IDENTIFICATION BASED ON DISTRIBUTION
EQUALIZATION

In [7], a memoryless nonlinear distortion is identified by com-
parison between the histogram of the degraded signal and an
expected histogram of the original signal, estimated from a
representative database of undistorted signals. Although in-
spired by that overall idea, the more general approach pro-
posed here does not require such a database and thus can be
applied to a larger variety of signal categories.

The key idea of the method is to explore the expected
shape of the sample histogram computed in short sections of
a typical undistorted signal. The observation of a large set
of 1000-sample blocks of undistorted audio signals indicates
that the signal kurtosis clusters around 3, which suggests they

can be loosely seem as Gaussian. Even if this hypothesis is
not always accurate, the combination of estimates performed
over many sections tends to cancel out the individual errors
and yield perceptually good results.

By assuming each block j of the original signal is Gaus-
sian with unknown variance σ2(j)

x , the proposed algorithm
searches for the nonlinear transformation that restores Gaus-
sianity from the observed non-Gaussian degraded signal. Af-
terwards, it combines all blocks in order to produce a global
estimate of the nonlinear function parameters. A key assump-
tion is the linearity in the vicinity of the origin, which allows
one to estimate the variance of the original signal.

Since the transformation is memoryless and invertible:

FY (j)(y) = FX(j)(g(y)), (2)

where FY (j)(.) and FX(j)(.) are the cumulative distributions
of y and x in a certain block j.

By applying F−1
X(j)(.) to both sides of the equation, g(y)

can be calculated as:

g(y) = F−1
X(j)(FY (j)(y)). (3)

The cumulative distribution FY (j)(y) can be approxi-
mated by the empirical distribution [8]:

FY (j)(y) ≈ F̂Y (j)(y) =
1

N
#{n, yn < y}. (4)

By replacing this estimate into (3) and taking into account
the Gaussian assumption for X , g(y) can be estimated as

ĝ(y) = Φ−1
σ2(j)
x

(
F̂Y (j)(y)

)
, (5)

where Φ
σ2(j)
x

(x) is the cumulative distribution of a zero-mean

Gaussian variable with variance σ2(j)

x . This variance can be
estimated by using the assumption that g′(0) = 1. By dif-
ferentiating both sides of (2) with respect to y, one finds that
fY (j)(0) = fX(j)(0) = 1√

2πσ2
x

, i.e.

σ2(j)

x =
1

2πfY (j)(0)2
. (6)

Thus, in order to estimate σ2(j)

x , one just needs a good esti-
mate for fY (j)(0)—which can be easily obtained by calculat-
ing the fraction of samples lying in a small interval around the
origin and dividing it by the length of this interval.

3.1. Coefficient estimation

A simple way to estimate the model coefficients from its non-
parametric estimation given in (5) is by applying the Least-
Squares method, according to the following procedure:

1. For every n ∈ {1, . . . , N}, form the pair (yn, ĝ(yn));

2. Build matrix Y as defined in Section 2;

3. Estimate the parameter vector m as

m̂ = (YTY)−1YT (ĝ(y)− y). (7)
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4. IDENTIFICATION BASED ON LIKELIHOOD
MAXIMIZATION

Let a = {a(1), . . . ,a(B)} and σ2
e = {σ2(1)

e , . . . , σ2(B)

e }. The
likelihood function is defined as l(a,σ2

e ,m;y) = p(y|a,σ2
e ,m).

After successively applying the Bayes’ rule and using the
formula for random variable transformation as well as the
Gaussian assumption for en,

l(a, σ2
e ,m; y) =

(
N∏

n=P+1

g′(yn)

)
×

B∏

j=1


 1√

2πσ2(j)
e



L

exp

{
− 1

2σ2(j)
e

e(j)T e(j)

}
,

where e(j) = {e(j−1)L+P+1, . . . , ejL+P } = e(j) = A(j)x(j),
with A(j) and x(j) defined in such a way that en = xn −∑P
i=1 aix(n−i). Each element of x(j) can be calculated from

xn = g(yn).

4.1. Maximum Likelihood Estimation

This approach is inspired by [5], which tackles the problem
of blind identification of Wiener systems with uncorrelated
Gaussian input. The problem addressed here is more general,
since both the input and the linear part of the model are time-
varying.

First, the negative log-likelihood is computed:

L(a,m, σ2
e) = − log

[
l(a, σ2

e ,m; y)
]

=

BL

2
log(2π) +

L

2

B∑

j=1

log(σ2(j)

e )−

N∑

n=P+1

log{g′(yn)}+

B∑

j=1

(
1

2σ2(j)
e

e(j)T e(j)

)
. (8)

By equating to zero the derivative of L(a,m, σ2
e) with

respect to each σ2(j)

e , one obtains

σ2(j)

e =
e(j)T e(j)

L
. (9)

By replacing σ2(j)

e into (8) and following the same pro-
cedure presented in [5], it can be shown that minimizing
L(a,m, σ2

e) is equivalent to minimizing the following objec-
tive function:

V (a,m) =

N∑

n=P+1

r2n, (10)

where
rn = g(m)en(a,m), (11)

g(m) = exp

{
− 1

N − P
N∑

n=P+1

log{g′(yn)}
}
, (12)

en(a,m) = g(yn)−
P∑

i=1

a
(d(n−P )/Le)
i g(yn−i). (13)

A suitable strategy to perform this minimization (and thus
maximize the likelihood) is the Gauss-Newton method, a sim-
plification of the Newton method applicable when the objec-
tive function can be written as a sum of squares (as in this
case), summarized as follows. Let

F : RD → R, F (θ) =

N∑

n=1

r2n(θ) (14)

be the objective function.
Starting from an estimate θ0, one can reach the optimum

solution by successively updating the parameters according to
θ(k+1) = θ(k) + ∆(k), where

∆(k) = −
(
J(θ(k))TJ(θ(k))

)−1
J(θ(k))T r(θ(k)). (15)

Each element of the Jacobian J(θ) is defined as:

J(θ)ij=
∂ri(θ)

∂θj
, i={1, 2, . . . , N}, j={1, 2, . . . , D}, (16)

and the elements of vector r(θ) are rn(θ), n = {1, 2, . . . , N}.
For the problem at hand, θ = {m,a(1),a(2), . . . ,a(B)}.

The derivatives of rn(θ) with respect to each element of θ
can be easily computed from (11) and will be omitted here.

5. RESULTS

To validate the proposed methods, first an artificially gener-
ated signal from an AR model of order P = 6 is distorted with
a curve defined by coefficients m1 = 5 and m2 = 30. Both
the method of distribution equalization (Sec. 3) and the ML
are applied to the degraded signal, yielding the results shown
in Fig. 2. The scatter plot allows us to see how much non-
linear distortion is still present in the restored signals. While
both methods reduce significantly the nonlinearity, the ML
approach yields better results: the restored signal is expected
to almost coincide with the original one.

Fig. 3 shows that the Gauss-Newton algorithm converges
quickly to the maximum likelihood estimates, which are very
close to the correct parameters (represented as red squares in
the plot). Fig. 4 shows histograms of the estimated parame-
ters, obtained upon 1000 applications of the method on data
generated according to the bootstrap principle [8]. This fig-
ure indicates that the confidence interval is indeed very nar-
row, which is a consequence of the large amount of data being
used as compared to the number of parameters.

In order to assess the methods in a more realistic sce-
nario, we generated a database of audio signals comprised of
excerpts from a comprehensive set of classical music tracks
artificially degraded by non-polynomial distortions (which
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Fig. 2. Comparison of algorithm performances for an artifi-
cial signal.

1 2 3 4 5 6
4

5

6

m
1

1 2 3 4 5 6

20

30

m
2

Iteration

Fig. 3. Evolution of Taylor expansion coefficients generated
by the ML method.
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Fig. 4. Distribution of estimates for Taylor expansion coeffi-
cients, generated with the bootstrap method. The red square
indicates the correct value.

makes the curve fitting harder for the polynomial model). For
instance, Fig. 5 shows the results corresponding to a given

audio signal distorted by yn = arctan(xn). One can see that
both algorithms are able to reduce the signal nonlinearity,
but the ML solution produces significantly better results. To
allow independent evaluation of results, examples with music
signals are provided in [9].
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Fig. 5. Comparison of algorithm performances for a real sig-
nal.

6. CONCLUSIONS

This paper dealt with the restoration of audio signals that have
been distorted by memoryless nonlinearity. Two techniques
to identify the nonlinear distortion function, and thus recon-
struct the original signal, were presented. Another potential
application of the methods is on digital modeling of tube am-
plifiers, which can be partially characterized by a nonlinear
distortion [10].

The assumption of signal Gaussianity proved to be instru-
mental in finding the degradation curve. In a model-based
framework, the autoregressive model with Gaussian excita-
tion was shown to yield better results than the Gaussian as-
sumption alone. In the latter case, the Taylor series expansion
of the nonlinear curve is effective in describing a wide range
of memoryless nonlinearities and leads to a simple maximum
likelihood estimate of the curve, which can be implemented
via the Gauss-Newton algorithm.

Compared to previous works in the literature, the pro-
posed methods have the advantage of being robust to a va-
riety of nonlinearity formats, as long as they are memoryless
and invertible. The described approach also establishes a con-
venient framework to build more sophisticated models to ad-
dress e.g. additive noise and nonlinearity with memory.
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