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ABSTRACT 

   

The conventional NMF-based speech enhancement algorithm ana-
lyzes the magnitude spectrograms of both clean speech and noise 
in the training data via NMF and estimates a set of spectral basis 
vectors. These basis vectors are used to span a space to approxi-
mate the magnitude spectrogram of the noise-corrupted testing 
utterances. Finally, the components associated with the clean-
speech spectral basis vectors are used to construct the updated 
magnitude spectrogram, producing an enhanced speech utterance. 
Considering that the rich spectral-temporal structure may be ex-
plored in local frequency and time-varying spectral patches, this 
study proposes a segmental NMF (SNMF) speech enhancement 
scheme to improve the conventional frame-wise NMF-based meth-
od. Two algorithms are derived to decompose the original 
nonnegative matrix associated with the magnitude spectrogram; the 
first algorithm is used in the spectral domain and the second algo-
rithm is used in the temporal domain. When using the decomposi-
tion processes, noisy speech signals can be modeled more precisely, 
and spectrograms regarding the speech part can be constituted 
more favorably compared with using the conventional NMF-based 
method. Objective evaluations using perceptual evaluation of 
speech quality (PESQ) indicate that the proposed SNMF strategy 
increases the sound quality in noise conditions and outperforms the 
well-known MMSE log-spectral amplitude (LSA) estimation. 
     Index Terms—nonnegative matrix factorization, NMF, speech 
enhancement, sub-band processing, patch processing 
 

1. INTRODUCTION 
The primary objective of single channel speech enhancement is to 
alleviate the effect of noise in speech signals and to improve 
speech quality. In contemporary communication applications, 
speech enhancement plays an important role as a pre-processor, 
suppressing speech distortion caused by noise. Generally, speech 
enhancement methods can be categorized into two broad classes: 
unsupervised and supervised. Unsupervised methods include a 
wide range of approaches such as spectral subtraction (SS) [1]-[3], 
Wiener [4, 5] and Kalman filtering [6], short-time spectral ampli-
tude (STSA) estimation [7], estimations based on super-Gaussian 
prior distributions for DFT coefficients of speech [8, 9], and 
schemes based on periodic models of speech signals [10]. In these 
unsupervised methods, statistical models are used for both speech 
and noise, and the model parameters regarding clean speech are 
estimated via noisy observations without any prior information 
concerning the noise type or speaker identity. However, a chal-
lenge of most unsupervised speech enhancement methods is esti-
mating the power spectral density (PSD) of noise [11, 12], which is 
particularly difficult when the interfering noise is non-stationary. 
By contrast, supervised speech enhancement methods use distinct 

models for clean speech and noise signals, and the parameters of 
each model are estimated using the respective samples. An interac-
tion model is then defined by combining speech and noise models, 
and finally the noise reduction task is conducted. Some examples 
of the supervised methods include codebook-based approaches [13] 
and hidden Markov model (HMM) based methods [14]. One ad-
vantage of these methods is that they do not need to estimate the 
power spectral density (PSD) of noise using a separate algorithm.  
The supervised approaches have been shown to produce enhanced 
speech signals with higher quality than those produced using the 
unsupervised methods. This is expected because more prior infor-
mation is incorporated into the algorithm when using supervised 
methods than it is when using unsupervised methods, and the con-
sidered models are trained for each specific type of signal. The 
required prior information regarding noise type (and speaker iden-
tity, in some cases) can be provided by the user or a separate 
acoustic environment classification algorithm [15], or obtained 
using a built-in classification scheme [13]. 

A successful supervised speech enhancement algorithm is 
based on the nonnegative matrix factorization (NMF) technique. 
With NMF, the basis spectra for clean speech and noise are first 
estimated using the corresponding training samples. Next, both 
speech and noise spectral bases are jointly used to approximately 
span the magnitude spectrogram of the noise-corrupted utterance. 
Finally, the portion spanned by the clean speech spectra bases is 
extracted and used to produce the enhanced testing utterance. Be-
cause of its effective performance levels, NMF-based speech en-
hancement has been extensively investigated [16]-[18].  

However, there is still room for improvement in conventional 
NMF-based speech enhancement: First, since NMF is directly 
applied to frame-wise full-band spectra, the learned basis vectors 
may omit discriminative information embedded in different fre-
quency components, and thus decomposing the spectrum to low 
and high frequency portions in order to focus on local frequency 
structure appears to catch the difference between speech and noise 
more accurately. Second, the frame-wise processing of NMF may 
lack an invariant structure for describing the time-varying charac-
teristics of spectra, and thus using a temporal window to embrace 
the neighboring spectra for the subsequent NMF processing could 
help to catch the invariant or stable structure.  In light of these 
observations, this study focuses on exploring basis functions that 
encode discriminative and invariant structure of speech and noise. 

 In this study, a segmental NMF (SNMF) speech enhancement 
scheme was proposed for improving the conventional NMF-based 
method. We presented two instantiations of SNMF based on the 
unique structures of speech signals: 1) distinct characteristics are 
presented in high and low frequency bands, and 2) temporal cues 
are vital. First, sub-band processing was performed to divide spec-
trograms into sub-band blocks; each sub-band spectrogram was 
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then individually enhanced via the standard NMF process. Second, 
patch processing was conducted to incorporate the temporal infor-
mation regarding the speech spectra. In the patch processing, each 
spectrum frame was augmented into a spectrum patch with neigh-
boring spectrum frames, and then the standard NMF process was 
applied to the spectrum patches to perform speech enhancement. 
According to the experimental results, SNMF with these two in-
stantiations provides a more favorable level of performance than 
conventional NMF-based method in the perceptual estimation of 
speech quality (PESQ) evaluation [26] across various signal-to-
noise ratio (SNR) conditions. 

 

2. SPEECH ENHANCEMENT USING THE NMF 
TECHNIQUE 

 

This section provides a review of the NMF technique and the relat-
ed procedure specifically for speech enhancement. 
 

2.1 The NMF technique 
NMF is a technique that involves projecting the columns of a 
nonnegative matrix onto a space spanned by a set of basis vectors. 
NMF has been widely used as a source separation technique ap-
plied to monaural mixtures [19, 20]. Recently, NMF has also been 
used to estimate clean speech from a noisy observation [21]–[23]. 
When applied to speech source separation, a sufficient separation 
can be expected only when speaker-dependent bases are learned. 
By contrast, regarding noise reduction, even if a general speaker-
independent basis matrix of speech is learned, a satisfactory level 
of enhancement can be achieved [24]. Nevertheless, in some cases 
where the basis matrices of speech and noise are similar (e.g., 
speech degraded with multi-talker babble noise), additional con-
straints are typically imposed to the conventional NMF in order to 
improve noise reduction [21]. 

Given a nonnegative data matrix ܄ ∈  ேൈெ, NMF is used to܀
calculate two nonnegative matrices ܅ ∈ ேൈ௥܀  and  ۶ ∈ 	௥ൈெ܀ , 
such that  

܄ ൎ .۶܅
 

(1)

One of the objective functions to be minimized in NMF to obtain 
the nonnegative matrices ܅ and ۶ in Eq. (1) is: 

Jሺ۶,܅ሻ ൌ ܄‖ െ۶܅‖ଶ ൌ ∑ ሺ܄௜௝ െ ሺ۶܅ሻ௜௝ሻଶ௜,௝ .
 

(2)

 ,and ۶ are often called the basis matrix and encoding matrix ܅
respectively, because each column of data matrix ܄ in Eq. (1) ap-
proximately lies in the space spanned by the columns of ܅ with 
the (encoded) coordinate coefficients stored in the column of ۶. 
The column vectors of ܅ are also known as the “building blocks” 
for data matrix ܄ because these vectors serve as the basis for the 
data vector space (provided they are linearly independent). The 
number of basis vectors, r, is often chosen to be lower than N and 
M, which are the size of each sample (data vector) and the total 
number of samples, respectively. In general, the two matrices ܅ 
and ۶ are obtained by iteratively minimizing the objective function 
defined in NMF as in Eq. (1). Additional details regarding the 
computation of ܅ and ۶ are described in [16]–[18]. 

 

2.2 NMF-based speech enhancement 
NMF-based speech enhancement consists of a training stage and an 
enhancement stage. In the training phase, it is assumed that a clean 
speech magnitude spectrogram, ܄௦்௡ 	∈ ܀

ே೑ൈெೞ , is available, where 

௙ܰ  and ܯ௦  denote the numbers of frequency bins and speech 
frames, respectively. Notably, ܄௦்௡ can be formed by (horizontally) 
concatenating the magnitude spectrograms of clean training utter-

ances, Each column of  ܄௦்௡, denoted by X௧
்௡,  	is an ௙ܰ ൈ 1 vector 

representing the spectral vector of a specific time frame in the or-
dered (magnitude) spectrogram series.  
By applying NMF, ܄௦்௡ can be approximated as  

௦்௡܄ ൎ ௦܅
்௡۶௦

்௡, (3)

where  ܅௦
்௡ ∈ ே೑ൈ௥and ۶௦܀

்௡ ∈ ௥ൈெೞ܀ , in which r is the number 
of basis vectors as the columns of  ܅௦

்௡	chosen to represent each 
source spectral vector  X௧

்௡ . Each column of ܅௦
்௡  is one of the 

spectral “building blocks”. 
Likewise, a speech-free noise magnitude spectrogram, ܄௡்௡ ∈
ே೑ൈெ೙܀  , is derived from a long noise segment, where ௙ܰ  is the 
number of frequency bins and ܯ௡ is the number of noise frames. 
According to NMF, we have 

௡்௡܄ ൎ ௡܅
்௡۶௡

்௡,
 (4)

where ܅௡
்௡ ∈ ே೑ൈ௥ and ۶௡܀

்௡ ∈   .௥ൈெ೙܀
In particular, during the training phase the standard NMF process 
is performed to iteratively update the four matrices, ܅௦

்௡ ௦்௡܄ ,  , 
௡܅

்௡  and ܄௡்௡  by minimizing ‖܄௦்௡ െ܅௦
்௡۶௦

்௡‖ଶ  and ‖܄௡்௡ െ
௡܅

்௡۶௡
்௡‖ଶ, respectively,  as in Eq. (2). 

In the enhancement phase, the two basis spectral matrices obtained 
in the training phase, ܅௦

்௡  and ܅௡
்௡ , are assumed to continue 

providing a suitable basis functions for describing speech and noise 
in the noise-corrupted testing utterances. The two matrices are 
horizontally concatenated to form a double-wide matrix, ܅௖

்௡ ൌ
ሾ܅௦

்௡	܅௡
்௡ሿ, and thus ܅௖

்௡ ∈ -ே೑ൈଶ௥, which acts as the basis ma܀
trix in the NMF process as described in Eq. (1) for approximating a 
data matrix. This data matrix corresponds to the magnitude spec-
trogram of a testing utterance that is mixed with clean speech and 
noise and is denoted by ܄௠௜௫

்௧ , and can be approximated via NMF: 

௠௜௫܄
்௧ ൎ ௖܅

்௡۶௖
்௡ ൌ ሾ܅௦

்௡	܅௡
்௡ሿ ൤

۶௦
்௧

۶௡
்௧൨. 

(5)

Different from the training phase, here the basis matrix ܅௖
்௡ ൌ

ሾ܅௦
்௡	܅௡

்௡ሿ remains unchanged while the encoding matrix ۶௖
்௡ ൌ

ሾ۶௦
்௧′	۶௡

்௧′ሿ′ is iteratively updated in order to achieve a better ap-
proximation. Finally, the component associated with the clean-
speech basis spectra constitutes the enhanced magnitude spectro-
gram for the testing utterances: 

௦்௧܄ ൎ ௦܅
்௡۶௦

்௧.                                       (6) 
Finally, the enhanced magnitude spectrogram ܄௦்௧  in Eq. (6) to-
gether with the original phase spectrogram is converted to the time 
domain and the enhanced testing utterance is obtained accordingly. 
 

3. PROPOSED SEGMENTAL NMF SPEECH 
ENHANCMENT SCHEME 

 

Speech signals exhibit a unique spectral-temporal structure. In the 
spectral domain, speech signals exhibit distinct characteristics in 
the high and low frequency bands. In particular, major speech 
components are primarily located at lower frequencies. In addition, 
speech is a time-varying signal, and its temporal information plays 
a crucial role in identifying the corresponding characteristics. This 
section develop two speech enhancement approaches based on the 
concept of NMF, which decompose the non-negative matrix asso-
ciated with the magnitude spectrogram of speech, namely sub-band 
and patch processing approaches. Figure 1 shows the applications 
of the two approaches to the spectrogram. Details are presented in 
the following discussion. 
3.1 Spectral-domain SNMF 
In the procedure shown in Eqs. (3) and (4), ܄௦்௡ and ܄௡்௡ are pro-
cessed in a full-band manner. Here, sub-band processing was used 
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Fig 1. The proposed structural NMF with the sub-band and patch 
processing. 
 

to segment the full-band speech and noise magnitude spectrograms 
into sub-bands, and this approach is called spectral-domain SNMF 
(denoted by SNMF (S) as a short-hand notation hereafter). First, 
the speech magnitude spectrogram, ܄௦்௡, that corresponds to clean 
training utterances as noted in subsection 2.2, is separated into ܄௦,ℓ

்௡ 
and ܄௦,ࣺ

்௡ (viz. ܄௦்௡ ൌ ሾ܄௦,ࣺ
்௡′	܄௦,ℓ

்௡′ሿ	′), which are factorized via NMF: 
௦,ℓ܄
்௡ ൎ ௦,ℓ܅

்௡۶௦,ℓ
்௡,

 (7)

ࣺ,௦܄
்௡ ൎ ࣺ,௦܅

்௡۶௦,ࣺ
்௡ ,

 (8)

where ܄௦,ℓ
்௡ ∈ ே೑,ℓൈெೞ܀ ௦,ℓ܅ ,

்௡ ∈ ே೑,ℓൈ௥܀ , ۶௦,ℓ
்௡ ∈ 	௥ൈெೞ܀ ࣺ,௦܄ ,

்௡ ∈
ே೑,ࣺൈெೞ܀ ࣺ,௦܅ ,

்௡ ∈ ே೑,ࣺൈ௥܀ , and ۶௦,ࣺ
்௡ ∈ ௥ൈெೞ܀ . The speech-free 

noise magnitude spectrograms are prepared in the same sub-band 
manner as the speech part. Accordingly, we obtain the sub-band 
basis matrices, ܅௡,ℓ

்௡ and ܅௡,ࣺ
்௡ , for the noise part. 

In the enhancement phase, the magnitude spectrogram of each 
testing utterance is divided into high and low frequency bands, 
௠௜௫,ℓ܄
்௧  and ܄௠௜௫,ࣺ

்௧ . NMF is then applied to  ܄௠௜௫,ℓ
்௧  and ܄௠௜௫,ࣺ

்௧  indi-
vidually with the fixed spectral basis matrices ܅௦,ℓ

்௡ and ܅௦,ࣺ
்௡ pre-

pared in the training phase. Consequently, we have  

௠௜௫,ℓ܄
்௧ ൎ ௦,ℓ܅ൣ

்௡	܅௡,ℓ
்௡൧ ቈ

۶௦,ℓ
்௧

۶௡,ℓ
்௧ ቉, 

(9)

ࣺ,௠௜௫܄
்௧ ൎ ࣺ,௦܅ൣ

்௡	܅௡,ࣺ
்௡ ൧ ቈ

۶௦,ࣺ
்௧

۶௡,ࣺ
்௧ ቉. 

(10)

Finally, with the estimated encoding matrices ۶௦,ℓ
்௧  and ۶௦,ࣺ

்௧  asso-
ciated with the speech part for the high and low sub-bands, respec-
tively, we can obtain 

௦,ℓ܄
்௧ ൎ ௦,ℓ܅

்௡۶௦,ℓ
்௧ . (11)

ࣺ,௦܄
்௧ ൎ ࣺ,௦܅

்௡۶௦,ࣺ
்௧ .

 
(12)

Finally, we concatenate the two matrices in Eqs. (11) and (12) to 

obtain the updated full-band spectrogram as ܄௦்௧ ൌ ሾ܄௦,ࣺ
்௧ ᇱ܄௦,ℓ

்௧ᇱሿ′.  
3.2 Temporal-domain SNMF 
The goal of the patch processing is to capture the temporal infor-
mation of speech signals. Thus the clean speech magnitude spec-
trogram, ܄௦்௡, established by the entire set of speech signals is first 
segmented into groups to be processed further. Speaking in detail, 
a sliding window is applied to ܄௦்௡	to capture its temporal infor-
mation, forming a patch ௧ܻ

்௡ at each time frame instant t by verti-
cally concatenating 2ܶ ൅ 1	neighboring frames of ܄௦்௡ . That is, 
Y௧
்௡ ൌ ሾX௧ି்

்௡ ; . . X௧
்௡ … ; X௧ା்

்௡ ሿ, where X௧
்௡ is the ݐ௧௛	column of  ܄௦்௡. 

Specifically, we set X௧ᇱ
்௡ ൌ Xଵ

்௡ for ݐᇱ ൑ 0	and X௧ᇱ
்௡ ൌ Xெೞ

்௡	for ݐᇱ ൒
 ௦. An extended speech spectrogram which contains the patches atܯ
different time instants is thus created: ܄௦,௉

்௡ ൌ ሾYଵ
்௡, . . Y௧

்௡ … , Yெೞ
்௡ሿ, 

where ܄௦,௉
்௡ ∈ ሺே೑ൈሺଶ்ାଵሻሻൈெೞ܀ . As for the noise part, an extended 

noise spectrogram,	܄௡,௉
்௡ ∈ -ሺே೑ൈ்ሻൈெ೙, which consists of the spec܀

tral patches from the original noise spectrogram ܄௡்௡ is prepared 
similarly to ܄௦,௉

்௡. Analogous to the procedures mentioned in sec-
tions 2.2 and 3.1, NMF is subsequently performed on ܄௦,௉

்௡ and ܄௦,௉
்௡ 

in the training phase to obtain 
௦,௉܄
்௡ ൎ ௦,௉܅

்௡۶௦,௉
்௡ ,

 (13)

௡,௉܄
்௡ ൎ ௡,௉܅

்௡۶௡,௉
்௡ .

 
(14)

In the enhancement phase, the extended spectrogram for each 
noise-corrupted utterance, denoted by ܄௠௜௫,௉

்௧ , is approximated via 
NMF with the fixed basis matrix ൣ܅௦,௉

்௡	܅௡,௉
்௡ ൧: 

௠௜௫,௉܄
்௧ ൎ ௦,௉܅ൣ

்௡ ௡,௉܅
்௡ ൧ ቈ

۶௦,௉
்௧

۶௡,௉
்௧ ቉, 

(15)

The speech part of the right-hand side in Eq. (15) is then extracted:   
௦,௉܄
்௧ ൎ ௦,௉܅

்௡۶௦,௉
்௧ .                                   (16) 

Denoting܄௦,௉
்௧ ൌ ሾYଵ

்௧, . . Y௧
்௧ … , Yெೞ

்௧ሿ , where ௧ܸ
்௧ ∈  ሺே೑ൈሺଶ்ାଵሻሻൈଵ܀

is the updated spectral patch at the frame time instant ݐ, we con-
struct the enhanced magnitude spectrum for the ݐ௧௛	frame by aver-
aging the ሺ2ܶ ൅ 1ሻ sub-vectors in ௧ܸ

்௧: 

௧ܷ
்௧ ൌ

ଵ

ଶ்ାଵ
ቆቂܸݐ

ቃݐܶ
1

݂ܰ
൅ ቂܸݐ

ቃݐܶ
݂ܰ൅1

2݂ܰ
൅⋯൅ ቂܸݐ

ቃݐܶ
2݂ܶܰ൅1

ሺ2ܶ൅1ሻ݂ܰ
ቇ,               (17) 

where ሾ ௧ܸ
்௧ሿ௔௕	is the sub-vector containing the ܽ௧௛ to ܾ௧௛ entries of   

௧ܸ
்௧ . Therefore, ܃௦்௧ ൌ ሾܷ1

,ݐܶ ,ݐ2ܷܶ . . , ܷெ೥
்௧ ሿ   is the finally enhanced 

magnitude spectrogram. This NMF-based method with patch pro-
cessing is termed temporal-domain SNMF and denoted by SNMF 
(T) as a compact notation in the discussions hereafter. 
 

4. EXPERIMENTS 
This section describes the experimental setups used to evaluate the 
proposed approaches. In addition to the conventional NMF and 
new presented SNMF schemes, a well-known speech enhancement 
method, MMSE log-spectral amplitude (LSA) estimation, was 
implemented for comparison. The conventional NMF enhancement 
algorithm is denoted as NMF for simplicity. Besides SNMF (S) 
and SNMF (T) used in isolation, we further developed an integrat-
ed scheme where the enhanced spectrogram is the average of the 
output spectrograms of the SNMF (S) and SNMF (T) processes, 
and this scheme is denoted by SNMF (ST) in the following exper-
imental results and discussions. 
 

4.1. Experimental setup 
This section presents the database, configurations of the speech 
enhancement systems, and the evaluation metric. 
 

4.1.1 Speech data preparation 
The experiments used the utterances included in the Aurora-2 da-
tabase [25], which contained connected English digit utterances 
generated by both female and male speakers at a sampling rate of 8 
kHz. Parts of these utterances were contaminated by various types 
of noise at different SNRs. In the experiments, 39 noise-free clean 
utterances produced by a target female speaker were used for gen-
erating the NMF basis matrix ܅௦

்௡  in Eq. (3). A segment of 
speech-free airport noise was used to prepare ܅௡

்௡ in Eq. (4). 50 
airport-noise corrupted utterances belonging to the same speaker 
were used to form the testing set. The SNR levels of the noise-
corrupted utterances were varied from 0 dB to 20 dB.  
 

4.1.2 Speech enhancement setup 
Some information about the setup of NMF-based speech enhance-
ment used in this study is as follows:  
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1) Each utterance was split into overlapped frames. The frame 
duration and frame shift were set to 20 ms and 10 ms, respectively. 
A Hamming window was then applied to each frame signal. 

2) The number of frequency bins, ௙ܰ, for the short-time Fourier 
transform (STFT) was set to 256. 

3) The ranks (the numbers of columns) of both the NMF basis 
matrix ܅௦

்௡  in Eq. (3) and ܅௡
்௡  in Eq. (4) were assigned to 20. 

The maximum number of iterations in the NMF process was 100. 
4) For sub-band processing, the high and low frequency bands 

are divided at 2,000 Hz.  
5) For patch processing, the number of frames contained in a 

spectral patch, 2ܶ ൅ 1, is set to 3. 
 

4.1.3 Objective evaluation metric 
Perceptual estimation of speech quality (PESQ) [26]-[28] was used 
as the evaluation metric. PESQ indicates the quality difference 
between the enhanced and clean speech signals, and it is analogous 
to the mean opinion score, which is a subjective evaluation index. 
The PESQ score ranges from 0.5 to 4.5, and a high score indicates 
that the enhanced utterance is close to the clean utterance.  
 

4.2. Experimental results 
This section presents the experimental results and discussions. The 
spectrogram analyses among the speech enhancement algorithms 
are presented, and the PESQ results for each algorithm are reported.  
 

4.2.1 Spectrogram analysis 
The spectrograms processed using LSA, NMF and SNMF (ST) 
methods are shown and compared in Fig. 2. Because the LSA 
method compensates for noise components in a frame-wise manner 
(which is different from the NMF-related technique), it was ex-
pected to provide complementary effect to the NMF-based method. 
Therefore, the LSA and SNMF (ST) were integrated, and the re-
sultant scheme is denoted as LSA+SNMF (ST). In Fig. 2, the con-
tent of the utterance is “FAK_3615A.08”, which was acquired 
from the Aurora-2 database and produced by the target speaker.  
The six panels in Fig. 2 indicate that ○C  LSA reduced noise mark-
edly, whereas the NMF-based approaches, including ○D  NMF and 
○F  SNMF (ST), maintained a favorable speech signal structure. ○E  
SNMF (ST) exhibited greater capability to reduce noise compo-
nents than ○D  NMF did. Finally, ○F  LSA+SNMF (ST) gave an im-
provement to ○E  SNMF (ST).  
 

4.2.2 PESQ results 
Table I shows the PESQ results of the various instantiations of 
SNMF scheme including SNMF (S), SNMF (T) and SNMF (ST), 
respectively. The PESQ results of noisy signals and the enhanced 
signals via the conventional NMF noted in subsection 2.2 are also 
listed and denoted as Noisy and NMF, respectively, in this table. 
Table 1 indicates that both SNMF (S) and SNMF (T) outperform 
NMF in most SNR cases, confirming the effectiveness of incorpo-
rating either of the spectral and temporal information into the con-
ventional NMF-based speech enhancement algorithm. Next, 
SNMF (ST) provides the highest PESQ results among the four 
approaches, indicating that the integration of spectral and temporal 
information by pairing SNMF (S) with SNMF (T) enables SNMF 
to achieve better performance than each component approach. 
Next, we compare LSA and its combination with NMF and SNMF. 
In Table II, we list the results of LSA (○C  in Fig. 2), LSA+NMF, 
LSA+SNMF (S), and LSA+SNMF (ST) (○F  in Fig. 2). Comparing 
Tables I and II shows that LSA+NMF outperforms LSA in most 
conditions, while LSA+SNMF (S) gives even better performance 
than LSA+NMF. The results indicate that the unsupervised LSA 

○A  clean speech ○B  noisy speech 

○C  LSA ○D  NMF 

○E  SNMF (ST) ○F  LSA+SNMF (ST) 
Fig 2. Spectrograms of:  ○A  clean speech, ○B  noisy speech, the enhanced 
speech via ○C MMSE-LSA, ○D  NMF, ○E  SNMF (ST), and ○F  LSA+SNMF 
(ST). 
 

Table I. PESQ for various enhancement methods in different SNRs 

SNR Noisy NMF SNMF (S) SNMF (T) SNMF (ST)
0 dB 1.30 1.67 1.70 1.67 1.70 
5 dB 1.77 2.07 2.10 2.10 2.12 
10 dB 2.06 2.33 2.38 2.34 2.39 
15 dB 2.39 2.53 2.60 2.56 2.63 
20 dB 2.78 2.79 2.89 2.79 2.91 

 

Table II. PESQ for various combinative methods in different SNRs 

SNR LSA LSA+NMF LSA+SNMF (S) LSA+SNMF (ST)

0 dB 1.68 1.96 1.94 1.98 
5 dB 2.23 2.36 2.42 2.43 
10 dB 2.48 2.58 2.62 2.65 
15 dB 2.80 2.81 2.88 2.89 
20 dB 3.04 2.91 3.04 3.05 

 

algorithm can be suitably integrated with supervised NMF- and 
SNMF-based methods to reduce the noise effect further. Moreover, 
it is noted that LSA+SNMF (ST) performs the best among the four 
approaches in Table II, confirming that the frame-wise LSA is well 
additive to the jointly sub-band (spectral) and patch (temporal) 
NMF scheme to provide superior noise reduction.  
 

5. CONCLUSION 
 
This study proposed a segmental NMF-based speech enhancement 
scheme to improve the conventional frame-wise NMF-based meth-
od. The spectral and temporal structures of speech signals were 
considered to derive sub-band and patch processing approaches, 
enabling the nonnegative magnitude spectrogram matrix to be 
decomposed into sub-matrices. The enhanced spectrograms de-
rived by these sub-matrices characterized speech signals more 
precisely than that obtained via the conventional NMF. The exper-
imental results demonstrated both sub-band and patch processing 
approaches (SNMF (S) and SNMF (T)) outperform the NMF-
based method as they operate in isolation, and these two approach-
es are well additive to each other, making the resulting method 
SNMF (ST) provide further improvement. Moreover, integrating 
the well-known LSA with any of the SNMF instantiations consist-
ently produce better noise reduction than the individual component 
method. In the future, we will conduct additional sets of objective 
evaluations and subjective listening tests to further examine the 
presented SNMF. 
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