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ABSTRACT

In most STFT-based speech enhancement algorithms only

the STFT amplitude of speech is processed, while the STFT

phase of the noisy signal is neither modified nor employed

to improve amplitude estimation. This is also, because mod-

ifying the spectral phase often yields undesired artifacts and

unnatural sounding speech.

In this paper, we first obtain a clean speech phase esti-

mate using a recent phase reconstruction algorithm. Then, we

propose to treat this reconstructed phase as uncertain a priori

knowledge when deriving a joint MMSE estimate of the clean

speech amplitude and phase. The resulting MMSE-estimator

yields a compromise between the phase of the noisy signal

and the prior phase estimate. Instrumental measures and in-

formal listening show that the proposed estimator reduces un-

desired artifacts and results in an improved speech quality.

Index Terms— Speech enhancement, phase estimation,

signal reconstruction, noise reduction.

1. INTRODUCTION

In many situations where speech signals are captured by

speech communication devices like hearing aids or cell

phones, the speech signals are disturbed by additive noise. In

this paper we address the enhancement of such noisy signals

in the short time discrete Fourier transform (STFT) domain.

In most commercially available noise reduction systems only

the clean speech magnitude is changed, while the noisy phase

is kept unchanged [1]. However, recently it has been shown

that speech enhancement algorithms may be improved if the

clean speech phase is known [2] leading to an increased inter-

est in phase processing [3]–[9]. In principle, the estimation of

the clean speech phase is possible for instance by iteratively

synthesizing and reanalyzing the clean speech amplitudes

[10]. However, these phase reconstruction algorithms require

the clean speech amplitudes to be known. When only esti-

mates are available, the resulting speech quality may degrade

greatly. See also [3, 11, 7, 9] for more information and recent

advances in iterative phase estimation.

This work has been funded by the DFG Research Grant GE 2538/2-1.

Recently, we proposed to estimate the clean speech phase

in voiced speech based on an estimate of the speech funda-

mental frequency [4]. We could show that this phase esti-

mate can be employed as an additional input to improve the

estimation of the clean speech spectral amplitudes [6]. How-

ever, when replacing the noisy phase by the estimated clean

speech phase for signal reconstruction, artifacts may occur

[3, 11, 4]. These artifacts occur whenever the phase estimate

is erroneous. Using [4], this may for instance happen when

reconstructing the phase at higher signal harmonics, as small

errors in the fundamental frequency estimate are multiplied

by the harmonic number.

In this paper, we assume we have an estimate of the

clean speech phase available and treat it as uncertain a prior

knowledge when deriving a joint minimum mean square

error (MMSE)-estimate of the clean speech phase and ampli-

tude (Section 3). Without loss of generality, this prior phase

information is obtained using the sinusoidal model based

phase reconstruction algorithm [4]. We show that taking the

uncertainty about the prior phase estimate into account allows

us to increase the instrumentally predicted perceptual quality

of speech (Section 4), which is also confirmed by informal

listening. Section 5 concludes this paper.

2. SIGNAL MODEL AND NOTATION

In this work, we assume we observe a noisy speech signal

Yk(ℓ) given by the additive superposition of a speech signal

Sk(ℓ) and a noise signal Nk(ℓ). Thus, in the STFT domain,

the noisy observation is denoted by

Yk(ℓ) = Sk(ℓ) +Nk(ℓ) . (1)

The segment index ℓ and the frequency index k, are omitted

in the sequel unless needed. The complex coefficients can be

represented by their amplitudes and phases denoted as

Y = RejΦY ; S = AejΦS ; N = V ejΦN . (2)

We denote random variables by capital letters, e.g. S,A,ΦS,

and their realizations by the corresponding lower case letters,

e.g. s, a, φS.
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3. DERIVATION OF THE PROPOSED ESTIMATOR

The goal of this paper is to find the MMSE-optimal estima-

tor of the (C)omplex speech coefficients given (U)ncertain

(P)hase information (CUP). For this we have to solve E(S |

Y, φ̃S), where φ̃S denotes a priori knowledge on the clean

speech phase. Without loss of generality, this prior phase

information can be obtained using the phase reconstruction

algorithm proposed in [4]. In [12] it has been argued that

estimating logarithmically compressed spectral amplitudes is

perceptually advantageous. You et al. generalized the log-

artihmic amplitude compression [12] by employing a com-

pression parameter β [13]. As in [14, 6] we adopt this idea

and incorporate the compression parameter β in our estima-

tor. Given prior knowledge on the phase, we thus have to

solve

Ŝ(β) = E
(
AβejΦS | y, φ̃S

)

=

∫ ∞

0

∫ 2π

0

aβejφS pA,ΦS|y,φ̃S

(
a, φS | y, φ̃S

)
dφSda. (3)

In order to solve (3), we need a model for the posterior

function pA,ΦS|y,φ̃S
. With Bayes’ theorem we can write

pA,ΦS|y,φ̃S

(
a, φS | y, φ̃S

)
=

pY,A,ΦS,Φ̃S

(
y, a, φS, φ̃S

)

pY,Φ̃S

(
y, φ̃S

)

=
pY |s,φ̃S

(
y | a, φS, φ̃S

)
pA,ΦS,Φ̃S

(
a, φS, φ̃S

)

∫ ∫
pY |s,φ̃S

(
y | a, φS, φ̃S

)
pA,ΦS,Φ̃S

(
a, φS, φ̃S

)
dadφS

(4)

meaning that we now need models for pY |s,φ̃S
and pA,ΦS,Φ̃S

.

To find a model for pY |s,φ̃S
we assume that if the clean speech

realization s = aejφS is known, the estimated phase φ̃S gives

no further information on Y , i.e.

pY |s,φ̃S
= pY |s. (5)

For complex Gaussian distributed noise spectral coefficients,

the probability density function (PDF) pY |s is also Gaussian

and with (5) we have

pY |s,φ̃S
(y | a, φS) =

1

πσ2
N

exp

(
−
|y − aejφS |2

σ2
N

)
. (6)

To solve (4), we still need a model for the joint PDF of

the clean speech amplitude, phase, and the phase estimate

pA,ΦS,Φ̃S
. As empirically shown in [15], amplitudes and

phases can be assumed to be mutually independent. Then, the

joint PDF pA,ΦS,Φ̃S
can be rewritten as

pA,ΦS,Φ̃S

(
a, φS, φ̃S

)
= pA(a) pΦS,Φ̃S

(
φS, φ̃S

)

= pA(a) pΦS|φ̃S

(
φS | φ̃S

)
pΦ̃S

(
φ̃S

)
.

(7)

Using (5) and (7) in (4), the posterior results in

pA,ΦS|y,φ̃S

(
a, φS | y, φ̃S

)

=
pY |s(y | a, φS) pA(a) pΦS|φ̃S

(
φS | φ̃S

)

∫ ∫
pY |s(y | a, φS) pA(a) pΦS|φ̃S

(
φS | φ̃S

)
dadφS

(8)

where we can cancel pΦ̃S
, as it is not part of the integral.

To model the posterior we still need models for the speech

amplitude prior pA and for the uncertainty of the prior phase

estimate, i.e. the conditional PDF pΦS|φ̃S
.

As in [14] we propose to model the speech spectral am-

plitudes using the χ-distribution

pA(a) =
2

Γ(µ)

(
µ

σ2
S

)µ

a2µ−1exp

(
−

µ

σ2
S

a2
)
, (9)

with the Gamma function Γ(·) [16, Eq. (8.31)], and shape pa-

rameter µ. The parameter µ allows to model different shapes

of the PDF of the speech amplitudes. Assuming speech coef-

ficients S are complex Gaussian distributed, the speech am-

plitudes can be modeled by a χ-distribution with shape pa-

rameter µ = 1. However, in the speech enhancement context,

speech has been shown to follow a heavy-tailed (also known

as super-Gaussian) distribution [17], which can be modeled

by setting µ < 1 [18, 14].

The novelty of this paper comes with employing an ex-

plicit model for the error between the prior phase estimate φ̃S

and the true phase φS in (8). For this we propose to employ

the von Mises distribution with concentration parameter κ

pΦS|φ̃S

(
φS | φ̃S

)
= exp

(
κ cos(φS − φ̃S)

)
/2πI0(κ). (10)

The circular variance of the von Mises distribution is

var(ΦS | a, y) = 1 − I1(κ)/I0(κ) [19], from which it fol-

lows that the variance decreases for an increasing κ. Here,

large values for κ mean that we are very certain about the

prior phase estimate φ̃S, while low values for κ reflect a large

degree of uncertainty.

With (6), (9), and (10), we have all models at hand to

determine the posterior (8). This posterior enables us to for-

mulate the MMSE estimator of the compressed speech coef-

ficients with uncertain prior knowledge of the clean speech

phase (3). Similar to [6], with [16, Eq. (3.462.1)], the integral

over the amplitude can be solved and we get the CUP:

Ŝ(β) = E
(
AβejΦS | y, φ̃S

)
=

(√
1

2

ξ

µ+ ξ
σ2
N

)β

Γ(2µ+ β)

Γ(2µ)
×

∫ 2π

0

ejφS exp
(
ν2/4

)
D−(2µ+β)(ν) pΦS|φ̃S

dφS

∫ 2π

0

exp
(
ν2/4

)
D−(2µ)(ν) pΦS|φ̃S

dφS

(11)
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where ν contains the phase difference between the phases of

the clean speech and noisy speech signals φY − φS and is

defined as,

ν = −
r

σN

√
2

ξ

µ+ ξ
cos(φS − φY), (12)

and D·(ν) is the parabolic cylinder function [16, Eq. (9.24)],

ξ = σ2
S
/σ2

N
= E

(
|S|2

)
/E
(
|N |2

)
is the a priori SNR. The

speech estimate is then obtained as

Ŝ = |Ŝ(β)|1/β
Ŝ(β)

|Ŝ(β)|
= ÂejΦ̂S . (13)

3.1. Implementation of the proposed CUP estimator

Solving the integral over the speech spectral phase φS in

(11) is quite difficult, as it involves the integration over the

parabolic cylinder function D·(ν). However, as the phase has

a limited span between 0 ≤ φS < 2π, the intergral in (11)

can be solved numerically with high precision. Furthermore,

in practice, speech enhancement gain functions that involve

computationally complex special functions are often precom-

puted and tabulated. Thus, we propose to solve the integral

in (11) numerically and store the result in a table. For a given

shape parameter µ and compression parameter β, this table

has four dimensions, the a priori SNR ξ, the a posteriori SNR

r2/σ2
N

, the concentration parameter κ, and the phase differ-

ence φS−φY. During runtime, the computational complexity

is thus very low and given by a table look-up.

3.2. Interpretation of the proposed CUP estimator

If we assume that the prior phase estimate φ̃S obtained using

[4] perfectly reflects the true phase, i.e. φS = φ̃S, then the

phase is known and deterministic. This can be modeled by

setting κ → ∞. Then the PDF pΦS|φ̃S
is given by a delta at

φ̃S. As a consequence, for κ → ∞ the estimate of the am-

plitude obtained by (11) resembles the amplitude estimator in

[6] while the estimate of the phase equals the prior phase in-

formation, i.e. φ̂S = φ̃S. Thus, the estimator in [6] is a special

case of the proposed estimator (11). The other extreme-case is

obtained by setting κ = 0. Then, the PDF pΦS|φ̃S
is uniform

and for µ = β = 1 the behavior of the proposed estimator

approaches the linear behavior of a Wiener filter. The result-

ing phase estimate for κ = 0 resembles the noisy phase φY.

However, for any 0 < κ < ∞, the proposed estimator will

be a compromise between the two cases κ = 0 and κ → ∞,

both in terms of the amplitude attenuation as well as in terms

of the phase estimate. This behavior is illustrated in Figure 1

for φ̃S − φY = π/4 and φ̃S − φY = π/2, where we set

µ = β = 1 and ξ = 0.2. It can be seen that for large a pos-

teriori SNRs r2/σ2
N

, the estimated phase will be close to the

observed phase φ̂S → φY, while for low a posteriori SNRs

the estimated phase is closer to the model phase φ̂S → φ̃S.
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(a) Amplitude and phase responses for φY = 0, and φ̃S = π/4.
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(b) Amplitude and phase responses for ξ = 0.2, φY = 0, and φ̃S = π/2

Fig. 1. Amplitude and phase responses for µ = β = 1 and

ξ = 0.2 for different values of κ in (10). For κ = 0 the

amplitude estimate approaches the behavior of a Wiener filter

(left) and the phase estimate results in φ̂S = φY (right). For

κ → ∞ the amplitude estimate approaches the result in [6]

(left) and the phase estimate results in φ̂S = φ̃S (right).

4. EXPERIMENTAL RESULTS

In this section, we apply the proposed estimator in a speech

enhancement task. For the estimation of the parameters, we

employed the phase reconstruction along frequency proposed

in [4] to obtain an estimate of the prior phase estimate φ̃S in

(10). This algorithm requires an estimate of the speech funda-

mental frequency which is obtained using PEFAC [20] which

also yields the probability of a signal segment being voiced,

which we denote by PHV
(ℓ). The noise power spectral den-

sity σ2
N

is estimated using the a posteriori speech presence

probability with fixed priors [21], while the a priori SNR

is estimated using the decision-directed approach [22] with

smoothing constant αDD = 0.96. All applied gain functions

are limited to be larger than -15 dB.

The parameter κ can now be adjusted to reflect the

certainty of the prior phase estimate φ̃S. As in unvoiced

speech the sinusoidal model based approach [4] does not

yield reasonable phase estimates, we control the value of

κ by the probability that a signal frame contains voiced

speech PHV
(ℓ). Furthermore, in [4] the phase estimates at

all frequencies are based on multiples of the estimate of the

fundamental frequency. This model is well fulfilled at lower

frequencies and less well fulfilled at the higher frequencies.

In the proposed algorithm this can be considered by using
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lower values for κ at high frequencies. With these considera-

tions, we set κ to

κ(k, ℓ) =

{
4PHV

(ℓ) , kfs/N < 4000Hz

2PHV
(ℓ) , kfs/N ≥ 4000Hz

, (14)

where N = 512 is the length of the discrete Fourier transform

and fs = 16 kHz is the sampling rate. The values of 4 and 2
are chosen based on informal listening.

The proposed CUP estimator is compared to three estima-

tors, denoted as “phase-sensitive [23]”, “phase-sensitive [23]

×exp(jφ̃S)” and “phase insensitive [14]”. In all four algo-

rithms we set µ = β = 0.5 to incorporate the super-Gaussian

character of speech and the perceptually motivated compres-

sion of spectral amplitudes. The “phase insensitive [14]” es-

timator does not modify the phase of the noisy speech in

the STFT domain, but only modifies the clean speech ampli-

tudes without taking the phase into account. Also the “phase-

sensitive [23]” approach does not modify the noisy phase.

However, in contrast to [14], in this approach the prior phase

estimate φ̃S is employed for an improved estimation of the

speech amplitudes using the phase sensitive amplitude esti-

mators proposed in [6, 23]. In the approach “phase-sensitive

[23] ×exp(jφ̃S)” we use the same phase sensitive amplitude

estimator [6, 23] but replace the phase of the noisy signal by

the prior phase estimate φ̃S. Note, that this corresponds to

setting κ → ∞ in the proposed CUP estimator, i.e. treating

the prior phase estimate as deterministic.

The performance of the four algorithms are compared us-

ing the (P)erceptual (E)valuation of (S)peech (Q)uality mea-

sure, as provided by (L)oizou [24] (PESQL). The PESQL

score is computed over the entire speech signals, i.e. without

separating voiced and unvoiced speech sounds. The results

are given in Figure 2. It can be seen that using the “phase-

sensitive [23]” approach outperforms the “phase insensitive

[14]” estimator, especially in babble noise. Using the prior

phase information φ̃S to replace the noisy phase, in low signal

to noise ratios (SNRs) the “phase-sensitive [23] ×exp(jφ̃S)”
approach can improve the performance even more. However,

in high SNRs, errors in the phase estimate decrease the perfor-

mance. In contrast, the proposed CUP estimator, which treats

the phase estimate φ̃S as uncertain prior knowledge, results in

a consistently larger PESQL-score for the wide range of con-

sidered SNRs. Informal listening reveals that replacing the

noisy phase by the prior phase estimate φ̃S in “phase-sensitive

[23] ×exp(jφ̃S)” may result in unnatural artifacts and unnat-

ural sounding speech (note that these artifacts do not occur

when the phase estimate is only employed for an improved

amplitude estimation as in “phase-sensitive [23]”). Further-

more, informal listening confirmed that these undesired arti-

facts are reduced by taking the uncertainty of the prior phase

estimate into account by using the proposed CUP estimator.
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Fig. 2. Instrumental evaluation of the perceptual speech qual-

ity for different input SNRs and noise types averaged over

200 sentences (100 spoken by female speakers and 100 spo-

ken by male speakers) from the TIMIT database. We show

the improvement over the unprocessed noisy speech.

5. CONCLUSIONS

While in most STFT-based single channel speech enhance-

ment algorithms the phase of the noisy signal is not explicitly

modified, more recently attention is drawn towards the im-

portance of phase in speech enhancement [2]. While phase

estimates can be robustly employed for improving spectral

amplitude estimation [6, 23], replacing the phase of the noisy

signal by a phase estimate may result in undesired artifacts in

the enhanced speech [3, 11, 4].

In this paper we proposed to employ an estimated clean

speech phase, obtained e.g. from the sinusoidal model based

phase reconstruction algorithm [4], as uncertain prior knowl-

edge when finding a joint MMSE-estimate of the clean speech

amplitude and phase. The resulting phase estimate is a com-

promise between the phase of the noisy signal and the prior

phase estimate. The estimated amplitude is a compromise be-

tween the outputs of the phase sensitive amplitude estima-

tor [6] and the output when assuming a uniformly distributed

phase. We showed that the proposed approach increases the

speech quality further and informal listening confirmed that

artifacts are reduced.

4514



6. REFERENCES

[1] R. C. Hendriks, T. Gerkmann, and J. Jensen, DFT-

Domain Based Single-Microphone Noise Reduction for

Speech Enhancement: A Survey of the State-of-the-art.

Colorado, USA: Morgan & Claypool, Feb. 2013.
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