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ABSTRACT

In this paper, we introduce a new anthropometric-based
method for customizing of Head-Related Transfer Functions
(HRTF) in the horizontal plane. The method uses Isomap,
artificial neural networks (ANN), and a neighborhood-based
reconstruction procedure. We first modify Isomap’s graph
construction step to emphasize the individuality of HRTFs
and perform a customized nonlinear dimensionality reduction
of the HTRFs. We then use an ANN to model the nonlinear
relationship between anthropometric features and our low-
dimensional HRTFs. Finally, we use a neighborhood-based
reconstruction approach to reconstruct the HRTF from the
estimated low-dimensional version. Simulations show that
our approach performs better than PCA and confirm that
Isomap is capable of discovering the underlying nonlinear
relationships of sound perception.

Index Terms— HRTF, Manifold, Isomap, Auditory Aug-
mented Reality, Virtual Auditory Display

1. INTRODUCTION

Head Related Transfer Function (HRTF) is the spectral filter-
ing of a sound source caused by the head, pinna and torso be-
fore it reaches the eardrum. HRTFs are complex-valued func-
tions that contain various types of localization cues, such as
Interaural Time Difference (ITD), Interaural Level Difference
(ILD) and spectral coloring. These static cues, in conjunction
with dynamic cues (e.g. head movements), define our three
dimensional perception of audio [1].

As auditory augmented reality applications become more
important [2], there is increasing research effort in the cus-
tomization of HRTFs. A significant problem for the imple-
mentation of 3D sound systems is the fact that spectral fea-
tures of HRTFs differ among individuals [1]. Various studies
show a decrease in localization accuracy due to nonindivid-
ualized HRTFs [3, 4]. Thus, it is necessary to personalize
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HRTFs to guarantee high quality 3D sound perception. How-
ever, custom HRTF measurement is a complex, time consum-
ing, and not scalable procedure [5]. To avoid HRTF measure-
ments, several theoretical models (spherical head model [6],
the snowman model [7]) and numerical methods (boundary
element method [8]) have been proposed. Nevertheless, the-
oretical models are approximations of complicated anatomy
and numerical methods are computationally intensive.

On the other hand, since HRTFs are closely related to
certain anthropometric parameters, they can therefore be
customized from anthropometric measurements [9]. An-
thropometric regression methods predict the individualized
HRTFs of a new subject using a model derived from a base-
line database. Usually, some dimensionality reduction is
applied to the HRTFs prior to customization.

2. PRIOR WORK

Nishino et al. [10] performed Principal Component Analysis
(PCA) on the log magnitude HRTFs in the horizontal plane
for each direction and ear separately. Then, linear regression
analysis for each direction and ear is applied on a baseline
database, using 9 anthropometric parameters as inputs and 5
PCA weights as outputs. For a new subject outside the train-
ing database, the PCA weights are predicted from the lin-
ear models and then used to reconstruct the log magnitude
of HRTFs. Finally, minimum-phase reconstruction [11] esti-
mates the final complex-valued HRTFs.

Due to the inability of linear methods (such as PCA)
to represent the complex relationship between HRTF and
multiple variables (i.e direction, frequency and individual),
Grindlay et al. [12] introduced a multilinear tensor frame-
work representation for HRTF decomposition. The tensor
has 3 modes: frequency mode, direction mode and subject
mode. A single linear regression model is used for mapping
anthropometric features to a 5 dimension vector representing
the subject mode in the tensor. Li et al. [13] employ a similar
approach for dimensionality reduction but instead of linear
regression, they use an artificial neural network (ANN).

Moreover, nonlinear techniques have been applied to both
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Fig. 1. Isomap Manifold for K=61 neighbors a) One-dimensional manifold as a function of azimuth b) Manifold embedded in
two dimensions c) Manifold embedded in three dimensions

dimensionality reduction of HRTFs (e.g Isomap, Locally
Linear Embedding) and to regression of HRTFs based on
anthropometric features (e.g Support Vector Regression [14],
ANNs [15, 13]). In [16], Duraiswami et al. present an ex-
ploratory study on learning the nonlinear manifold structure
in vertical plane HRTFs using Locally Linear Embedding
(LLE). They also propose a new method for HRTF interpola-
tion and a new distance metric between two HRTFs based on
the geodesic distance on the learned manifold.

Kapralos et al. [17, 18] conducted a comparative study
from a quantitative point of view between PCA, Isomap and
LLE for HRTF dimensionality reduction, finding that Isomap
and LLE perform better than PCA in subjective experiments.

As in [15, 13], we employ an ANN for regression to pre-
dict the HRTFs for a new subject based on his anthropometric
parameters. Unlike this prior work, we use nonlinear reduc-
tion technique, Isomap, to construct a manifold structure in
horizontal plane HRTFs..

Our work is inspired on the successful results by Du-
raiswami et al [16] and Kapralos et al [17, 18] using LLE and
Isomap for HRTF interpolation and dimensionality reduction.
Their findings support the idea suggested by Seung et al [19]
that nonlinear manifold techniques are crucial for under-
standing how perception arises from the dynamics of neural
networks in the brain. However, neither of them addresses
the customization of HRTFs as we do.

As in previous work [10, 15], we use the minimum phase
approximations for HRTFs, a minimum-phase function cas-
caded with a pure delay [11]. In practice, the pure delay is
the ITD and it is commonly cascaded in either the left or right
HRTF of each left-right HRTF pair [10]. Calculation of ITD
is beyond the scope of this paper. Several studies address
the ITD calculation based on anthropometric parameters, no-
tably in [20]. Here, we focus only on the spectral features
of HRTFs magnitude and, unless otherwise stated, when we
refer to HRTF we are referring to its magnitude.

3. HRTF CUSTOMIZATION

In this section we describe our HRTF personalization method.
First, we reduce the HRTF dimensionality using Isomap.
Then, we train an ANN with anthropometric parameters as
inputs and the low-dimensional HRTFs as output – for each
new subject with known anthropometric features, the ANN
model predicts the low-dimensional HRTF representation. Fi-
nally, we use neighbor reconstruction mapping to recover the
high-dimensional HRTFs from the low-dimensional space.

3.1. Dimensionality Reduction using Isomap.

In general, dimensionality reduction algorithms provide a
method for taking a dataset represented in a D×N matrix X
consisting of N sample vectors xi, i.e. X = {x1, ...,xN} ⊂
RD and calculating a corresponding low-dimensional repre-
sentation in a d ×N matrix Y = {y1, ...,yN} ⊂ Rd, where
d < D. Here, consider all HRTFs in the horizontal plane as
points in the D high-dimensional space.

Isomap is a nonlinear dimensionality reduction algorithm,
first introduced in [21]. The first step in the Isomap algorithm
is to construct a graph G(V,E) on the input data set X. Each
sample xi ∈ X is represented by a node vi ∈ V , and two
nodes viand vj are connected by an edge (vi, vj) ∈ E with
length dX(xi,xj) if xi is one of the K nearest neighbor of
xj . The edge length dX(xi,xj) is given by the Euclidean
distance between xi and xj [21, 22].

The second step in Isomap involves computation of the
shortest paths between all nodes in G. Distances are stored
pairwise in a matrix DG. The distance matrix DG repre-
sents geodesic distances between all samples on the mani-
fold [22]. Because these distances are Euclidean, Isomap
makes the same assumption of local linearity as LLE [22].

The third and final step is to construct the d-dimensional
embedding calculating the eigenvectors of τ(DG), where
τ(D) = −HSH/2 and Sij = D2

ij (S is the matrix of
squared distances) and Hij = δij − 1/N . Recall that N is
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Fig. 2. Intrinsic Dimensionality Estimation.

the number of sample points and δ is the Kronecker delta
function. Finally, let λp be the pth eigenvalue (in decreasing
order) of the matrix τ(DG), and vip be the ith component
of the pth eigenvector. Then set the pth component of the
d-dimensional coordinate vector yi equal to

√
λvip [21].

Isomap first step is the construction of a graph. The sim-
plest approach is to select, for each data point, a fixed number
of nearest neighbors, K, as measured by Euclidean distance.
Other criteria, however, can also be used to choose neighbors,
and in general, neighborhood selection in Isomap presents an
opportunity to incorporate a priori knowledge [23].

We know that some correlation exists due to left-right
symmetry of HRTFs at frequencies below 5.5 KHz [24].
Moreover, to emphasize the individuality of HRTFs across
directions, Nishino et al. [10] perform PCA reduction sepa-
rately for each direction and ear. Here, instead of applying
Isomap separately for each direction and ear, we propose
construct the graph taking into account this knowledge.

One of our contributions is our graph G construction pro-
cedure. Consider again the high-dimensional dataset in aD×
N matrix X = {x1, ...,xN} ⊂ RD formed by N HRTFs of
two ears of P subjects at M azimuths in the horizontal plane
(i.e. N = 2 · P ·M ).

We connect each datapoint xi to K = 2P + 1 neighbors
and we set its edge lengths to sijdX(xi,xj), where sij is a
scale factor, according to the following rules: 1) If xi and xj

represent HRTFs of the same azimuth and ear but different
subject, then connect them and set sij = 1/100 in order to
emphasize the individuality of HRTFs across directions. 2)
Let θi and θj be azimuths of HRTFs represented by xi and
xj respectively. Regardless of the subject, if xi and xj rep-
resent HRTFs of opposite ears and θj is the mirror horizontal
azimuth of θi (i.e. θj = 360 − θi), then connect them and
set sij = 1/100 in order to take advantage of left-right sym-
metry. 3) Let θi and θj be azimuths of HRTFs of the same
subject represented by xi and xj respectively. If θj is the
nearest azimuth greater than θi or if θj is the nearest azimuth
less than θi , then connect xi and xj and set sij = 1.

Before applying Isomap, we first need to select the num-
ber of neighbors, K, and the intrinsic dimensionality, d. Due
to our proposed graph construction explained above, the num-
ber of neighbors is set toK = 2P +1, where P is the number
of subjects on the dataset X. The intrinsic dimensionality was
estimated analyzing the residual variance. Figure 2 shows the
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Fig. 3. Variability inside clusters due to inter-subject differ-
ences. Red and blue points represent HRTFs at symmetric
azimuths of left and right ears respectively

normalized eigenvalues (in decreasing order) calculated over
the complete dataset X. Since eigenvalues give the variance
in each dimension, when they are lower than a threshold, little
is gained from adding a dimension [22]. Using 0.025 for the
threshold we find the intrinsic dimensionality d = 4 [25].

Unlike previous works [16], we apply Isomap only once,
over the entire dataset – a single procedure for the HRTFs of
all subjects, ears and directions taking into account our pro-
posed neighborhood selection. Figure 1 shows the Isomap
manifold calculated for all directions and ears of 30 individu-
als (i.e. P = 30, soK = 2P+1 = 61 neighbors) from CIPIC
database [9] in the horizontal plane, where the color represent
the azimuth angle. In Figure 1a, we plot the first embedded
component of Isomap as a function of azimuth in order to
highlight the symmetric properties of HRTFs. In Figure 1b
and 1c, the manifold embedded in two and three dimensions
show the variability of HRTFs across directions. Note that for
each direction there are small clusters of reduced HRTFs. The
variability inside these clusters is due to inter-subject differ-
ences (see Figure 3). Figure 1b illustrates that clusters are not
uniformly distributed – the large gaps between some clusters
is due to the HRTF non-uniform sampling in CIPIC database.

3.2. Regression using an Artificial Neural Network

ANN is a system inspired by human brain capable of approxi-
mating nonlinear functions of their inputs. Since the relation-
ship between HRTFs and anthropometric parameters is very
complex, it is difficult to express them with linear functions.
Here, we apply a back propagation ANN with sigmoid ac-
tivation function in the hidden layer and a linear activation
function in the output layer. The inputs are s anthropometric
parameters, the azimuth angle in the horizontal plane and the
ear (Left=1, Right=-1). The outputs are the coordinates of the
HRTFs in the low-dimensional space obtained in Section 3.1.
In order to determine the number of hidden nodes, we varied
it from 5 to 30 and selected 20 hidden nodes that produced the
lowest mean squared error. Note that our approach requires
training only one ANN for all directions and ears. After the
regression model is learned, the individual HRTF on the low-
dimensional space for a new subject can be predicted by his
anthropometric parameter measurements.

4508



−150 −100 −50 0 50 100 150
4.5

5

5.5

6

6.5

7

7.5

Azimuth in Degrees

M
e

a
n

 S
D

 (
d

B
)

 

 
ISOMAP
PCA

Fig. 4. Mean Spectral Distortion as a function of azimuth.

3.3. Neighborhood Reconstruction Mapping

Unlike PCA and similar linear reduction methods, Isomap
produce a low-dimensional embedding

Yd×N = {y1, ...,yN} ∈ Rd

from the samples in X without generating an explicit map [22].
As we are interested in reconstructing an HRTF in the high-
dimensional space from the low-dimensional HRTF predicted
by the ANN, we need to project a low-dimensional point y
back into the original space. Since Isomap assumes that a
sample and its neighbors are locally linear, we can perform
the mapping using a linear combination of a sample’s K
neighbors [22], and the reconstructed HRTF, Ĥ ,

Ĥ =

K∑
i

wixi (1)

to calculate the weights wi, we follow Brown et al. [22], and
choose wi to be the inverse Euclidean distance between the
sample and the neighbor i in the low-dimensional space.

4. SIMULATIONS

We use the publicly available CIPIC database [9] which con-
tains head related impulse responses (HRIRs) measured for
45 subjects at 1250 directions (25 azimuths and 50 elevations
in interaural coordinate system). We employ 50 azimuth di-
rections per subject and ear corresponding to horizontal plane.
Each HRIR is 200 samples long (roughly 4.5 ms at 44.1 KHz
sampling rate and 16 bit resolution). Each HRIR was trans-
formed into an HRTF by a 512-point FFT. To reduce the ef-
fects of error due to nonlinearity introduced by equipments
used to measure HRIRs, HRTFs were filtered to preserve fre-
quencies between 200 Hz and 15 kHz, leaving 172 frequen-
cies in each HRTF magnitude. We use only subjects that has
the complete anthropometric parameters (i.e. 35 subjects).
Performance was evaluated using a K-fold cross-validation
approach. We split the HRTF dataset into 7 folds of 5 subjects
each (6 folds for training and 1 fold for testing). Because the
number of subjects for training each fold is P = 30, then ac-
cording to our neighborhood selection proposed, the number
of neighbors for Isomap is set to K = 2P + 1 = 61

The CIPIC database also contains anthropometric mea-
surements. We selected 8 anthropometric parameters for re-
gression in accordance to [26]: head width, head depth, neck
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width, shoulder width, cavum concha height, cavum concha
width, pinna height, and pinna width. As explained in Sec-
tion 3.2, the azimuth angle, the L/R ear, and the eight anthro-
pometric parameters are the inputs for the ANN and the out-
puts are the low-dimensional HRTFs reduced using Isomap.
We used Matlab Neural Network Toolbox 8.0.

We implemented a PCA-based customization, for com-
parison, with seven principal components (90% of variance).
We used a similar ANN structure for the regression model and
K-fold cross-validations for testing. We used Matlab Dimen-
sionality Reduction Toolbox [25] for both PCA and Isomap.

We choose the mean spectral distortion as an error metric,

SDM =

√√√√ 1

Nf

∑
fk

(
20log10

|H(fk)|
|Ĥ(fk)|

)2

(2)

where H and Ĥ represent the measured and reconstructed
HRTF respectively andNf is the number of frequency points.
The reconstructed HRTF, Ĥ , was calculated using Equation 1.

As can be seen in Figure 4, our approach performs better
than PCA. The confidence interval (±2σ, 95%) shows that our
method has less variability than PCA (see Figure 5b). More-
over, our approach achieves better performance even with less
dimensions than PCA. As in other studies [10], error increases
at high frequencies due to complex scattering caused by pinna
(Figure 5a) but in our approach it stays roughly below 5dB.

5. CONCLUSIONS

In this paper, we have introduced a new method for customiz-
ing HRTFs in the horizontal plane. Unlike previous works, we
perform dimensionality reduction once on the entire HRTF
dataset for all subjects, directions and ears in the horizontal
plane. Besides using Isomap as a nonlinear dimensionality re-
duction technique, we introduce a brand-new graph construc-
tion technique that incorporates important prior information
about the HRTFs. The results show that incorporating prior
knowledge in the neighborhood selection in Isomap can lead
to a better manifold representation, and we can conclude that
Isomap is a promising reduction technique for HRTFs anal-
ysis and synthesis. As future work, we plan to extend our
approach to estimate HRTFs beyond just the horizontal plane.
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