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ABSTRACT

A novel approach to the selection of generic head-related

transfer functions (HRTFs) for binaural audio rendering

through headphones is formalized and described in this paper.

A reflection model applied to the user’s ear picture facilitates

extraction of the relevant anthropometric cues that are used

for selecting two HRTF sets in a database fitting that user,

whose localization performances are evaluated in a complete

psychoacoustic experiment. The proposed selection increases

the average elevation performances of 17% (with a peak of

34%) with respect to generic HRTFs from an anthropomor-

phic mannequin. It also significantly enhances externalization

and reduces the number of up/down reversals.

Index Terms— spatial hearing, binaural audio, HRTF

1. INTRODUCTION

One of the main limitations of binaural audio through head-

phones that cause its exclusion from commercial applications

in virtual and augmented reality lies in the lack of individ-

ualization of the entire rendering process. Since recording

individual head-related transfer functions (HRTFs, i.e. the

frequency- and location-dependent acoustic transfer functions

between the sound source and the eardrum of a listener) is

both time- and resource-expensive, obtaining reliable HRTFs

for a particular subject in different and more convenient ways

is desirable. A common practice employs the trivial selec-

tion of an unique HRTF set for all listeners (i.e. recorded

on a dummy head built according to mean anthropometric

data, such as the KEMAR mannequin [1]). However, anthro-

pometric features of the human body have a key role in HRTF

shaping: several studies have attested how listening to non-

individual binaural sounds results in evident front-back con-

fusion, lack of externalization and localization errors [2].

Computational models generate synthetic HRTFs from a

physical [3] or structural interpretation of the acoustic con-

tribution of head, pinna, shoulders and torso. These models

have different degrees of simplification, going from basic ge-

ometries [4, 5] to more accurate descriptions capable to repro-

duce the peaks and notches of the HRTF [6] . HRTF spectral

details also emerge exploiting principal component analysis

(PCA) [7] allowing to further tune the HRTF to a specific lis-

tener.

In this work we investigate the alternative approach of se-

lecting non-individual HRTF sets from an existing database,

according to two criteria extrapolated from a pinna reflection

model [8]. The idea is that the two chosen HRTFs should ren-

der better spatial sounds than a generic one (KEMAR) thanks

to the closer relation between pinna geometry and localization

cues, especially in the vertical dimension.

2. HRTF SELECTION

2.1. Previous works

The last decade registered a notable increase of the number

of psychoacoustic tests related to HRTF selection techniques.

The most common approach, which we also adopt in this pa-

per, is to use a specific criterion in order to choose the best

HRTF set for a particular user from a database. Seeber and

Fastl [9] proposed a procedure according to which one HRTF

set was selected among 12 based on multiple criteria such as

spatial perception, directional impression and externalization.

Even though their selection minimized both localization error

variance and inside-the-head localization, it was only tested

on the frontal horizontal plane. Zotkin et al. [10] selected the

HRTF set that best matched an anthropometric data vector of

the pinnae (7 parameters), testing the [−45◦, +45◦] elevation
range in the front hemisphere in dynamic conditions. Results

showed a general yet not universal decrease of the average

elevation error.

Similarly, selection can be targeted at detecting a subset of

HRTFs in a database that fit the majority of a pool of listeners.

Such an approach was pursued e.g. by So et al. [11] through

cluster analysis and by Katz and Parseihian [12] through sub-

jective ratings. The choice of the personal best HRTF among

this reduced set is, however, left to the listener.

A different selection approach was undertaken by Hwang

et al. [13] and Shin and Park [14]. They modeled HRIRs on

the median plane as linear combinations of basis functions

whose weights were then interactively self-tuned by the lis-
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teners themselves. Results of the respective tests on a few

experimental subjects, although giving mixed results, showed

how this method generally reduces the localization error with

respect to generic HRTFs, as well as the number of front/back

reversals.

2.2. Selection criteria

Thanks to the physical connection between the uniqueness of

the listener’s pinna shape and elevation cues in sound local-

ization, this work exploits the use of a revised pinna reflec-

tion model [15] on a 2-D image as a selection mechanism for

HRTFs. According to a ray-tracing method,1 the three main

frequency notches of a specific median-plane HRTF can be

extracted with reasonable accuracy by calculating the distance

between a point lying approximately at the ear canal entrance

(which we refer to as the focus point) and each point lying on

the three pinna contours thought to be responsible for pinna

reflections, i.e. the helix border (C1 in Fig. 1), the antihelix

and concha inner wall (C2), and the concha outer border (C3).

Specifically, given the i-th contour Ci, an elevation ϕ and

assuming each reflection to be negative and responsible for

a single notch, we calculate the frequency where destructive

interference between the direct sound and the sound reflected

by the pinna contour occurs as

f i
0
(ϕ) =

1

ti(ϕ)
=

c

2di(ϕ)
(1)

where c is the speed of the sound, ti(ϕ) the temporal delay

between the direct and reflected rays, and di(ϕ) the distance
between the pinna reflection point and the focus point.

These frequencies were found to closely approximate

notch frequencies appearing in the corresponding measured

HRTFs of a number of subjects [15]. Given a subject whose

personal HRTFs are not available, it is consequently possible

for him to select the HRTF set in a database that has the

minimum mismatch between the f i
0
frequencies extracted

from his own pinna contours and the F i
0
notch frequencies

of the available median-plane HRTFs, extracted through a

structural decomposition algorithm [16]. More formally, the

above mismatch is defined as

m =
1

n

n∑

i=1

wi

|ϕ|

∑

ϕ

|f i
0
(ϕ)− F i

0
(ϕ)|

F i
0
(ϕ)

, (2)

where n is the maximum number of notches in the available

HRTFs in the 4 − 16 kHz frequency range (typically 3), wi,

i = 1 . . . n is a convex combination of weights and ϕ spans

all the [−45◦, 45◦] frontal elevation angles for which the i-th

notch is present in the corresponding HRTF.

The relative importance of the pinna contours can be de-

termined by tuning the wi’s. Once fixed, the HRTF set in the

database whose mismatch is the lowest is selected.

1This is possible because in the frequency band where notches appear the

wavelength is small enough compared to the dimensions of the pinna.
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Fig. 1. Side-face picture and pinna contours of one subject.

3. LOCALIZATION TASK

Eight subjects (6males and 2 females) whose age varied from

22 to 40 (mean 27.4, SD 6.1), took part to the localization

task. All subjects reported normal hearing according to the

adaptive maximum likelihood procedure proposed in [17].

3.1. Apparatus

The listening tests were performed in a Sound Station Pro 45

silent booth. Sennheiser HDA 2002 headphones were plugged

to a Roland Edirol AudioCapture UA-101 external audio card

working at 44.1 kHz sampling rate.

Subjects entered localization judgments in a GUI de-

signed in MATLAB. In the GUI three different frames re-

quired judgments of elevation angle, azimuth angle, and

externalization. Perceived elevation3 was entered by manip-

ulating a vertical slider spanning all elevations from −90◦ to

90◦ which interactively controlled a blue marker moving onto

an arc-shaped profile, very similarly to the input interface de-

scribed in [13]. Perceived azimuth was selected by placing a

point in a circular ring surrounding a top view of a stylized

human head, inspired by the GUI described in [18]. The

externalization judgment simply required the subject to select

one of two answers to the question “where did you hear the

sound?”, i.e. “inside the head” or “outside the head”. More

details on the software environment can be found in [19].

3.2. Stimuli

All stimuli used as sound source signal a train of three 40-
ms gaussian noise bursts with 30 ms of silence between each

burst, repeated three times. This type of sound has already

been proved to be more effective than a basic white noise

burst [12]. The average measured amplitude of the raw stim-

ulus at the entrance of the ear canal was 60 dB(A).

2These dynamic closed circumaural headphones offer an effective passive

ambient noise attenuation and high-definition reproduction of high frequen-

cies.
3Azimuth and elevation are defined according to the vertical polar coor-

dinate system.
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Table 1. Global mean results of the localization task.

S1 (KEMAR) S2 (w1 = w2 = w3 =
1

3
) S3 (w1 = 1, w2 = w3 = 0)

Azimuth error (mean/SD) 20.0◦±3.0◦ 21.7◦±5.3◦ 21.3◦±4.5◦

Elevation error (mean/SD) 31.6◦±4.4◦ 29.9◦±5.1◦ 26.2◦±4.7◦

Linear fit slope (elevation) 0.20 0.30 0.40

r2 goodness-of-fit (elevation) 0.10 0.17 0.31

Front/back reversal rate 36.6% 32.9% 34.3%

Up/down reversal rate 18.3% 14.7% 9.0%

Externalization rate 62.2% 64.7% 69.7%

Experimental stimuli were then created by filtering the

sound source signal through different HRTF sets and a head-

phone compensation filter obtained with the algorithm pre-

sented in [20] applied to measured responses of a KEMAR

mannequin without pinnae. It has to be highlighted that com-

pensation was not individual; however, such kind of process-

ing offers an effective equalization of the headphone up to

8 − 10 kHz on average and simulates a realistic application

scenario where it is not feasible to design personal compen-

sation filters. The HRTF sets were selected among the 45
subjects of the CIPIC database [21].

3.3. Procedure

Acquisition of pinna images was the first step performed in

order to compute the mismatch defined in Sec. 2.2. We cre-

ated an ad-hoc capture environment in order to acquire left

side-face pictures of the experimental subjects (see Fig. 1). In

a second phase, pictures were first rotated in order to horizon-

tally align the tragus with the nose tip; then, the maximum

protuberance of the tragus was chosen as the focus point.

Contours C1, C2 and C3 were manually traced and then used

to calculate scaled distances from the focus point and conse-

quently the f0 frequencies as previously described.

For each subject, a fixed HRTF set corresponding to the

KEMAR subject with large pinnae (CIPIC ID 21) was in-

cluded as control condition. Moreover, two different selec-

tion criteria were considered, corresponding to two different

convex combinations of the weights in Eq. (2). In summary,

for each subject three HRTF sets were selected based on the

following criteria:

• criterion S1: KEMAR subject;

• criterion S2: minimum m, with w1 = w2 = w3 = 1

3
;

• criterion S3: minimumm, with w1 = 1, w2 = w3 = 0.

We verified that for each of the tested subjects S2 and S3 se-

lect different HRTF sets, denoting an adequate pool of sub-

jects in the database and a reasonable differentiation between

the two criteria. We also excluded subject 21 from the candi-

date selected HRTF sets of S2 and S3.

Eighty-five stimuli per HRTF set, each repeated twice,

were presented to each experimental subject, for a total of

85 × 3 × 2 = 510 trials. These were generated considering

all of the possible combinations of 10 azimuth values (from

−180◦ to 180◦ in 30◦-steps, excluding ±90◦) and 8 elevation
values (from −45◦ to 60◦ in 15◦-steps), plus 5 presentations

of the 90◦-elevation point in order to balance the number of

stimuli per elevation. Subjects were instructed to enter the

elevation, azimuth, and externalization judgments in this spe-

cific order for each trial. Each presentation of the 85 positions
within a fixed HRTF set, proposed in random order, made up

one block of trials, implying that each subject performed a

total of 6 blocks. The sequence of presentation of the blocks

followed a latin-square design. In order to reduce fatigue of

the subject, we added a 3-minute pause between blocks.

4. RESULTS AND DISCUSSION

Localization errors in azimuth and elevation were analyzed

separately with front/back confusions on perceived azimuth

resolved (with the exception of a 30◦ cone of confusion

around ±90◦). Furthermore, linear fitting was performed on

the front/back-corrected polar-angle evaluations. One subject

who performed elevation judgments at chance performance,

corresponding to guessing the direction of the sound (mean

elevation error ≈ 45◦), for all three HRTF sets was treated as

an outlier and discarded from the analysis.

The mean and SD of localization errors for the three dif-

ferent selections, along with mean linear fit details, front/back

and up/down confusion rates,4 and perceived externalization,

are shown in Table 1. Note that the adopted criteria have little

effect on azimuth localization; this is reasonable as long as

the selection is performed on pinna features only and not on

the optimization of interaural differences. Similarly, the mean

front/back reversal rate is not greatly affected by the HRTF

choice, probably because of the number of dominant factors

that contribute to its resolution such as dynamic localization

cues. However, S3 remarkably succeeds in significantly im-

proving both the mean externalization and up/down reversal

rates − up/down reversals are more than halved with respect

to S1. We now concentrate on a more detailed analysis of the

elevation results.

4The up/down confusion rate is calculated with a tolerance of 30◦ in ele-

vation angle around the horizontal plane, and averaged over all target eleva-

tions except ϕ = 0
◦.
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Table 2. Elevation results divided per subject.

ID Criterion S1 S2 S3

SA

Mean elev. error 34.7◦ 37
◦

26.7◦

Slope 0.094 0.016 0.281

r2 0.023 0.001 0.231

SB

Mean elev. error 25.4◦ 20.4◦ 21
◦

Slope 0.444 0.670 0.606

r2 0.303 0.534 0.534

SC

Mean elev. error 34.9◦ 31.8◦ 30.4◦

Slope 0.162 0.231 0.252

r2 0.184 0.335 0.341

SD

Mean elev. error 27.1◦ 29.6◦ 18
◦

Slope 0.286 0.231 0.677

r2 0.223 0.143 0.627

SE

Mean elev. error 32.5◦ 30.5◦ 29.3◦

Slope 0.077 0.115 0.159

r2 0.074 0.073 0.196

SF

Mean elev. error 29.3◦ 27.6◦ 29
◦

Slope 0.309 0.355 0.317

r2 0.192 0.249 0.200

SG

Mean elev. error 37.4◦ 32.4◦ 28.3◦

Slope 0.026 0.477 0.500

r2 0.002 0.208 0.301

Table 2 illustrates the elevation-related scores of every

subject, i.e. mean elevation error, slope of the linear fit, and

r2 goodness-of-fit. Note that S1 has the average worst per-

formance, while S3 always scores better results. S3 gives an

average improvement of 17.4% in elevation error with a peak

of 33.6% compared to S1, suggesting that the most external

contour, C1, has high significance for elevation cues. Con-

versely, S2 is unreliable as its performance is sometimes the

best and sometimes the worst among the three criteria. This

could be related to the non-individual headphone compensa-

tion that introduces spectral distortion starting from around

8 − 10 kHz, where the spectral notches due to the two inner

pinna contours generally lie. Consequently, weights assigned

to the two inner contours should be differentiated with respect

to that of C1.

More evidence of the benefits brought by S3 can be appre-

ciated in Fig. 2, which reports elevation scatterplots of subject

SG. Note the progressive improvement of the elevation judg-

ments along with the three criteria, witnessed by the rise of

both the linear fit slope (red line) and the goodness of fit.

As a separate note, a deeper analysis of the results

highlighted that the best elevation performances of S3 are

achieved for sound sources coming from the back (with a

mean improvement of the elevation error of 28% compared to

S1). This finding highlights that the HRTF selection criterion,

even though developed in the front median plane, is robust

and positively affects perception in the posterior listening

space too. Finally, since selection was based on a picture

of the left pinna, we compared the results for sources in the

left and right hemispheres. No significant differences were
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Fig. 2. Elevation scatterplots of subject SG. Black line: ideal

response curve. Red line: linear fit of data.

found, allowing to conclude that for the tested subjects the

chosen ear did not influence elevation judgments.

5. CONCLUSIONS

To sum up, the exploitation of the pinna reflection model

for HRTF selection is promising and the reported experiment

confirms these expectations. Compared to the use of a generic

HRTF with average anthropometric data, the pinna reflec-

tion approach increases the average elevation performances

of 17%, significantly enhancing both the externalization and

the up/down confusion rates. The average improvement can

be compared to the results found by Zotkin et al. in [10],

where the increase of the elevation performance between a

generic HRTF and a HRTF selected on anthropometric pa-

rameters was reported to be around 20-30% for 4 subjects

out of 6. However, a more careful calculation of the average

performance on all six subjects shows that the average eleva-

tion error decrease is about 6.5%. Still, our results are not

directly comparable to theirs because of the different exper-

imental conditions (e.g. presence of head tracking, use of a

hand pointer for localization, different elevation range, small

number of stimuli).

We found that the selection criterion assigning the whole

weight to contour C1 gives the best results. Indeed, pinna

contours may have different weights and could play different

roles in the selection. As future work, we are planning to ex-

ploit the three contours in a tuning process: while C1 will be

used to pick out the candidate HRTF sets, the other contours

will select the “best” HRTF set among the remaining.

It is worthwhile to mention that the experiment was per-

formed in non-optimal experimental conditions (e.g. no in-

dividual HRTFs for comparison, non-individual headphone

compensation); still, the listening setup comes closely to a

feasible scenario for practical applications. In light of this,

we are currently developing a tool that automatically extracts

pinna contours from a set of 2D images [22]. An extension

of the reflection model to three dimensions would greatly im-

prove the accuracy of the extraction and selection processes.
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