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ABSTRACT
In this paper we propose a robust beamforming technique which
takes into account uncertainties and variations in the radiation pat-
tern of the loudspeakers. The proposed technique is based on the
solution of a robust least-square problem in which the propagation
matrix is to some extent unknown. Both simulations and experimen-
tal results prove the validity of the proposed methodology in terms
of directivity index and white noise gain.

Index Terms— Loudspeaker array, robust beamforming, robust
least-squares, radiation pattern, regularization.

1. INTRODUCTION

This paper concerns the problem of synthesizing directive sound
fields by means of beamforming through loudspeaker arrays. In the
last decades, controllable directivity patterns were adopted for sound
reinforcement applications [1]. Recently, thanks to the availability
of fast beam tracing techniques [2, 3], controlled directivity patterns
have been used for immersive sound reinforcement in reverberant
environments [4] and for sound field rendering [5, 6].

Many beamforming design techniques have been proposed for
the purpose of spatially selective sound capture and, thanks to the
reciprocity between microphones and loudspeakers [7], these tech-
niques can be readily applied to the sound playback scenario [8, 9].
In these techniques, each loudspeaker is fed with a filtered version
of the wideband signal to be reproduced; the derivation of the filters
is what characterizes a specific technique.

Broadband and frequency-invariant beamformers, i.e. beam-
formers with a beamwidth constant among frequencies, have been
first introduced in [10, 11] based on the spatial Fourier transform
of a continuous aperture. Analytic approaches have been presented
for specific discrete array deployments, e.g. linear [12], cylindrical
[13], spherical [14, 15]. To overcome the restrictions on transducer
locations imposed by analytical approaches, in [16] Parra introduces
a numerical method based on the solution of a least-squares prob-
lem, originally conceived for microphone arrays but easily appli-
cable to loudspeaker arrays. This is a two-step procedure, which
first solves numerically a least-squares problem that decouples the
frequency-behavior from the spatial-behavior through a change of
basis, and then solves a second least-squares problem for the design
of the beamforming filter. It has been noted, however, in [17], that
such technique suffers from relevant errors when the knowledge of
the propagation matrix G is not exact. In particular, the matrix G,
which comes into the picture in both steps of the procedure, is in-
fluenced by uncertainties in the speaker positions and/ or in their
radiance pattern.

Several approaches have been proposed to address the sensitiv-
ity problem. In [17] Mabande et al. present a method which incor-

porates a constraint for the White Noise Gain (WNG) into a least-
squares beamformer design and still leads to a convex optimization
problem that can be solved directly. An extension to time-domain
design has been presented in [18]. In [19] Lai states, however, that
it is difficult to select an appropriate level of WNG for any given set
of errors in speaker positions and/ or directivity. In [20] Trucco et
al. present a beamforming technique that is inherently robust against
errors in the propagation matrix. In [21] Lai et al. adopt a Farrow
structure for the beamforming and they incorporate the probability
density functions for the microphone error into the design formula-
tion. In [22], in the context of mitigating the effect of interferers,
Rübsamen and Gershman extend the 1D covariance matrix fitting
approach to multiple dimensions, and the steering vectors are mod-
eled by means of uncertainty sets. In [23] Doclo and Moonen pro-
pose two design procedures aimed at increasing the robustness. The
first embeds the probability density functions of the steering vectors,
whereas the second optimizes the worst-case performance through
the minimax criterion. In [24] Levin et al. propose a technique that
modifies the classical loading scheme incorporating a non-diagonal
elements to attenuate the effect of sensor uncertainties. The method
in [24], however, is data-dependent, i.e. the filters depend on the sig-
nal to be rendered, thus making its use for rendering purposes quite
cumbersome.

In this paper we propose an extension of the data-independent
beamformer in [16]. More specifically, in both problems of change
of basis and beamforming, the uncertainty in the propagation matrix
is modeled as in the Robust Least-Squares problem in [25]. A non-
diagonal loading of the original least-squares solution is obtained as
solution. Results show that the accuracy of the beamforming im-
proves with respect to the Tikhonov regularization in terms of direc-
tivity index and white noise gain.

The rest of the manuscript is organized as follows: Section 2
states the problem and provides a short overview over the beamform-
ing solution in [16]. Section 3 presents the proposed methodology.
Section 4 shows some simulations and experimental results. Section
5 states the relation of the work in this paper with state-of-the-art
techniques. Finally, section 6 draws some conclusive remarks.

2. BACKGROUND AND PROBLEM STATEMENT

Consider an array ofN loudspeakers, placed at xn = [xn, yn, zn]T ,
n = 1, . . . , N . Denote with k the wave vector pointing toward
direction Ω = (θ, φ), where θ ∈ [0, π] and φ ∈ [0, 2π) represent the
elevation angle and the azimuth angle, respectively. The magnitude
of the wave vector is k = |k| = ω/c, ω being the radial frequency
and c being the speed of sound. Let us consider a grid of propagation
directions denoted by Ωq , q = 1, . . . , Q. The array response on this

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4481



grid is [26]
f(k) = G(k)h(k), (1)

where [G(k)]q,n = gn(k,Ωq) is the propagation function from the
nth loudspeaker toward direction Ωq , h(k) is a vector of N com-
plex filter coefficients and [f(k)]q = f(k,Ωq) is the array response
in direction Ωq . Notice that the propagation function contains the
contributions related to the attenuation and to the directional loud-
speaker behavior. It can therefore be factorized into [7]

gn(k,Ωq) = gFF,n(k,Ωq) · dn(k,Ωq), (2)

where gFF,n(k,Ωq) = e−j(k
T xn) is the free-field propagation

function and dn(k,Ωq) is the (complex) directivity of the loud-
speaker.

In order to produce a frequency-invariant beamformer, in [16]
Parra proposes a basis transformation, which leads from G(k) to
a new basis G̃ through a transformation matrix B(k), which mini-
mizes the approximation error in the least-squares sense

minimize
B(k)

‖G(k)B(k)− G̃‖22. (3)

In [16], the new basis G̃ is chosen to be frequency-invariant and eas-
ily steerable. For this reason, the new basis consists in the spherical
harmonics and the approximation is truncated to order L and degree
M . We can thus write the propagation matrix in direction Ωq in the
new basis as

[G̃]q =
[
Y 0
0 (Ωq), Y

−1
1 (Ωq), . . . , Y

M
L (Ωq)

]
. (4)

In [16] design of the beamformer is accomplished in the trans-
formed domain. In particular, the spatial filter in the transformed
domain can be computed to approximate an objective array response
f in the least-squares sense [26], i.e.

minimize
h̃(k)

‖G(k)B(k)h̃(k)− f‖22 (5)

and the filter coefficients in the original domain are obtained as [16]

h(k) = B(k)h̃(k). (6)

The previous derivation of the spatial filters does not take into
account uncertainty or variations in speaker locations and their di-
rectivity pattern [27]. In this manuscript we consider the geometri-
cal uncertainty to be negligible with respect to the directivity pattern.
We model the effect of the uncertainty on the pattern as a random
variable δ(k,Ω) of variance σ2

D , which alters the nominal directivity
pattern d(k,Ω) usually specified by the loudspeaker manufacturer.
We can thus write that

dn(k,Ω) = d(k,Ω) + δ(k,Ω), (7)

where δ(k,Ω) ∼ N (0, σ2
D(k,Ω)). Notice that the same approach

could also be used for the modeling of the uncertainty of the speaker
locations. This aspect, however, goes beyond the scope of the pa-
per. By substituting (7) into (2) we obtain an expression that relates
the uncertainty on propagation function with the uncertainty on the
directivity pattern

gn(k,Ω) = gFF,n(k,Ω)d(k,Ω) + gFF,n(k,Ω)δ(k,Ω), (8)

or, in matrix notation,

G(k) = GFF (k)�D(k) + GFF (k)�∆(k) (9)

where [GFF (k)]q,n = gFF,n(k,Ωq), [D(k)]q,n = d(k,Ωq),
[∆(k)]q,n = δ(k,Ωq) and � denotes Hadamard product. Finally,
we can express G(k) as the random variable

G(k) = G(k) + U(k), (10)

where G(k) = GFF (k) � D(k) is the mean value of G(k) and
U(k) = GFF (k)�∆(k) describes its statistical variation.

In the next section we describe how a knowledge of the statistical
model of G(k) can be exploited to derive a closed-form solution for
the problem of designing a robust beamformer.

3. ROBUST LEAST-SQUARES BEAMFORMING

In [16] the propagation matrix appears in both steps of basis trans-
formation and synthesis of the filter.

We first consider the basis transform problem in (3). We are
interested in minimizing the mean case approximation error, i.e.

minimize
B(k)

E[‖G(k)B(k)− G̃‖22], (11)

where E[ · ] is the expectation operator. Recalling the factorization of
the propagation matrix in (10) we can express the objective function
as [25]

E[‖GB− G̃‖22] = E[(GB− G̃ + UB)T (GB− G̃ + UB)]

= (GB− G̃)T (GB− G̃) + E[BTUTUB]

= ‖GB− G̃‖22 + BTPB,

where we have dropped the dependency on k for compactness of
the notation, and P = E[UTU]. Hence, the statistical robust least-
squares problem can be written as a regularized least-squares prob-
lem

minimize
B

‖GB− G̃‖22 + ‖P1/2B‖22, (12)

whose solution is [25]

B = (G
T
G + P)−1G

T
G̃. (13)

Let us now consider the problem in (5) for the computation of
the beamforming filters. If we apply the same minimization criterion
used in (11), we obtain

minimize
h̃

E[‖GBh̃− f‖22], (14)

where the uncertainty lies in the product GB. Recalling (9) and (10)
we can write

GB = GB + UB = GB + Υ, (15)

where GB = GB and Υ = UB. Thus, the objective function in
(14) can be written as

E[‖GBh̃− f‖22] = E[(GBh̃− f + Υh̃)T (GBh̃− f + Υh̃)]

= (GBh̃− f)T (GBh̃− f) + E[h̃TΥTΥh̃]

= ‖GBh̃− f‖22 + h̃TΠh̃,

where
Π = E[ΥTΥ] = BTPB. (16)

Thus, the problem (14) can be reformulated as the statistical robust
least-squares problem

minimize
h̃

‖GBh̃− f‖22 + ‖Π1/2h̃‖22, (17)
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Fig. 1: Custom cylindrical loudspeaker array (Fig. 1a) and measure-
ment setup (Fig. 1b).

whose solution is [25]

h̃ = (GB
T
GB + Π)−1GB

T
f . (18)

Finally, the filter coefficients h in the original domain are obtained
by the change of basis in (6).

It is important to observe that both (13) and (18) correspond to
a loading of the least-squares solution through matrices P and Π,
respectively. With respect to the Tikhonov regularization, however,
the loading is not diagonal, as P and Π may have non-diagonal el-
ements different from zero. A similar result was attained in [24] in
the context of data-dependent beamformers. We also notice from
(16) that P and Π are related through B. Therefore, with respect to
[16], the only additional knowledge required for a complete charac-
terization of the beamforming filters is the matrix P.

4. RESULTS

In this section we present simulations and experimental results to
validate the beamforming design methodology presented in sec. 3.

4.1. Experimental setup

The measurements are conducted in a room with short reverberation
time, being T60 ≈ 50 ms in the frequency band 200 Hz ÷ 5 kHz.
We adopt a custom cylindrical loudspeaker array, designed by B&C
Speakers, mountingN = 32 2-inch full-range drivers. The radius of
the cylinder is 9.2 cm, while the distance between drivers along the
z axis is 7.5 cm. This results in a maximum radiation mode L = 3,
having Nyquist frequency fNyq,3 ≈ 2.2 kHz [28]. Fig. 1a shows the
loudspeaker array.

The measurement setup, along with the reference frame, is
shown in Fig. 1b. Notice that the origin of the reference frame
coincides with the center of the loudspeaker array. In order to es-
timate the response of the array of speakers, M = 7 measurement
microphones are deployed at angles Ω = (θt, 0), t = 1, . . . ,M and
distance fixed and equal to 1.3 m, thus forming an arc of sensors
on the xz plane. The loudspeaker array is mounted on a stepper
turntable, which allows to rotate the array in the xy plane towards
directions φp, p = 1, . . . , Qφ. The microphones have been cali-
brated in such a way that their response to an omnidirectional source
located in the center of the reference frame is equal in amplitude for
all the M = 7 microphones. For each rotation angle of the turntable
and for each microphone, the response of the array in the direction

(θq, φp) is evaluated. As a consequence, the response is evaluated
on a grid of Ωq = (φp, θt) propagation directions, indexed by
q = Qφ(t − 1) + p, with resolution 180◦/(Qθ − 1) = 15◦ for the
elevation angle and 360◦/Qφ = 5◦ for the azimuth angle.

In all the simulations and experiments shown in this section,
the frequency-independent desired response of the loudspeaker ar-
ray f(k) is a unit impulse in direction Ω = (90◦, 0◦), i.e.{

f(k,Ωq) = f(Ωq) = 1, if q = Qφ
(
Qθ+1

2
− 1
)

+ 1,

f(k,Ωq) = f(Ωq) = 0, otherwise.

We choose to truncate the spherical harmonics expansion to L = 12
in order to ensure a more numerically accurate basis transformation;
we remark that this choice is not intended to increase the accuracy of
the reproduced soundfield since radiation modes higher than L = 3
are not reproducible by our setup.

The time-domain filters hn(t), n = 1, . . . , N are derived from
(6) through length-K Inverse Fourier Transform, being K = 512.
The excitation signals are Golay complementary sequences a(t) and
b(t) of length LG = 4096 [29]. Let ra(t,Ωq) = a(t) ∗ f(t,Ωq)
and rb(t,Ωq) = b(t) ∗ f(t,Ωq) be the array responses in direction
Ωq due to input a(t) and b(t), respectively. Through the definition of
Golay complementary sequences [29], the array response is obtained
by

f(t,Ωq) = (1/(2LG)) (a(t)ra(t,Ωq) + b(t)rb(t,Ωq)) ,

which is transformed through length-K Fourier transform to obtain
the array response f(k,Ωq) in the frequency domain. For each ro-
tation p of the turntable the set f(k,Ωq), q = Qφ(t − 1) + p, t =
1, . . . ,M of array responses is acquired, such that after a complete
rotation of the turntable the array response is sampled on the whole
northern hemisphere. Due to the symmetry of the measurement
setup and of the loudspeaker array, the response on the southern
hemisphere is obtained by symmetrizing the response in the northern
hemisphere, i.e.

f(k,Ωq)|q=Qφ(t−1)+p,
t=M+1,...,Qθ

= f(k,Ωq)|q=Qφ(t−1)+p,
t=M−1,...,1

.

In the following paragraph, we compare the array response
f̂tik(k) produced by filters computed from (5) adopting Tikhonov
regularization, as suggested in [16], with the array response f̂rls(k)
produced by filters computed from (18). The coefficient for the
Tikhonov regularization has been set to −20 dB. For the proposed
robust design, we set the variance of the loudspeaker directivity
pattern to σ2

D(k,Ω) = −20 dB. The nominal directivity pattern
d(k,Ω), and the variance σ2

D(k,Ω) used in both design method-
ologies, have been experimentally determined by measuring in a
preliminary stage individual drivers mounted in the array structure.

4.2. Experimental results

Figs. 2a and 2b show the array responses on the xy plane, i.e.
f̂tik(k, (90◦, φp)) and f̂rls(k, (90◦, φp)), p = 1, . . . , Qφ. Notice
that with the proposed design methodology the beam is reasonably
rendered in the whole frequency band of interest, despite the pres-
ence of aliasing starting from the Nyquist frequency, which for the
considered loudspeaker configuration is fnyq ≈ 1.7 kHz. On the
other hand, with Tikhonov regularization, the beam is not rendered
for frequencies above 3 kHz.

Figs. 2c and 2d show the array responses on the xz plane, i.e.
f̂tik(k, (θt, 0

◦)) and f̂rls(k, (θt, 0◦)), t = 1, . . . , Qθ . As already
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Fig. 2: Measured array response on the xy plane (Figs. 2a and 2b)
and on the xz plane (Figs. 2c and 2d). The amplitude response is
normalized on a frequency basis and represented in a dB scale.

observed for the xy plane, also in this case f̂rls(k) clearly exhibits
a reasonably narrow beam, though widened at low frequencies due
to the small number of loudspeakers available to control the sound
beam along the direction of the elevation. On the other hand, f̂tik(k)
only matches the desired response in a small frequency range be-
tween 1.5 kHz and 3 kHz.

In order to quantitatively assess the performance of the proposed
design methodology, Fig. 3 shows the directivity index DI(k) of the
loudspeaker array as a function of frequency. DI(k) is defined as the
ratio between the power radiated in the solid angle towards which
the beam is steered and the average power radiated on the sphere,
as in [26]. Fig. 3a shows the directivity index computed in a sim-
ulative setup that reproduces the real one, while Fig. 3b plots the
directivity index for real data. Both results clearly show that the en-
ergy of f̂tik(k) is similar to an omnidirectional pattern frequencies
above 3.5 kHz, while a significant portion of the energy of f̂rls(k)
still remains concentrated in the desired region.

The robustness of the proposed design methodology is high-
lighted through the analysis of the White Noise Gain (WNG), de-

fined as in [26] by WNG(k) =
(∑N

n=1|hn(k)|2
)−1

. Fig. 4 com-
pares the WNG resulting from the filters computed with Tikhonov
regularization with the WNG resulting from filters computed from
(18). Notice that the proposed methodology is able to guarantee an
improved robustness in the whole frequency band of interest.
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Fig. 3: Simulated (Fig. 3a) and measured (Fig. 3b) directivity, ob-
tained with Tikhonov regularization (DItik(k), blue curves) and with
the proposed design methodology (DIrls(k), red curves).
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Fig. 4: White Noise Gain resulting from filters computed with
Tikhonov regularization (WNGtik(k), blue curve) and from filters
computed with the proposed methodology (WNGrls(k), red curve).

5. RELATION TO PRIOR WORK

The design methodology developed in this paper should be consid-
ered as an improved version of the beamforming algorithm originally
presented in [16], where robustness against variations and errors of
the speaker directivity is gained. Even if developed following a dif-
ferent strategy, the method in [24] attains similar conclusions for
what concerns the loading of the least-squares solution. We remark,
however, that the beamforming in [24] is data-dependent, whereas
the technique presented in this paper is data-independent.

6. CONCLUSIONS

In this work we have presented a data-independent methodology for
the design of beamfoming through loudspeakers under uncertainties
of the directional behaviour of the acoustic drivers. Experimental
results and simulations show that the novel technique is more robust
than Tikhonov regularisation. Even if explicitly designed for loud-
speaker arrays, the same framework can be adopted in the context of
beamforming with microphone arrays.
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[4] A. Canclini, D. Marković, F. Antonacci, A. Sarti, and
S. Tubaro, “A room-compensated virtual surround system
exploiting early reflections in a reverberant room,” in Proc.
20th European Signal Processing Conference (EUSIPCO), Bu-
carest, RO, Aug. 27–31, 2012, pp. 1029–1033.

[5] F. Antonacci, A. Calatroni, A. Canclini, A. Galbiati, A. Sarti,
and S. Tubaro, “Soundfield rendering with loudspeaker ar-
rays through multiple beam shaping,” in Proc. IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics
(WASPAA’09), New Paltz, NY, US, Oct. 18–21, 2009, pp. 313–
316.

[6] L. Bianchi, F. Antonacci, A. Sarti, and S. Tubaro, “Render-
ing of directional sources through loudspeaker arrays based on
plane wave decomposition,” in Proc. IEEE Int. Workshop on
Multimedia Signal Processing (MMSP’ 13), Pula, IT, Sept. 30
– Oct. 2, 2013, pp. 13–18.

[7] E. G. Williams, Fourier Acoustics: Sound Radiation and
Nearfield Acoustic Holography, Academic Press, London, UK,
1999.

[8] D. B. (Don) Keele Jr., “Implementation of straight-line and
flat-panel constant beamwidth transducer (CBT) loudspeaker
arrays using signal delays,” in Proc. AES Conv. 113, Los An-
geles, US, Oct. 5–8, 2002.

[9] E. Mabande and W. Kellermann, “Towards superdirective
beamforming with loudspeaker arrays,” in Proc. Int. Conf. on
Acoustics (ICA’07), Madrid, ES, Sept. 2–7, 2007.

[10] D. B. Ward, R. A. Kennedy, and R. C. Williamson, “Theory
and design of broadband sensor arrays with frequency invariant
far-field beam patterns,” J. Acoust. Soc. Am., vol. 97, pp. 1023–
1034, Feb. 1995.

[11] T. Abhayapala, R. Kennedy, and R. Williamson, “Nearfield
broadband array design using a radially invariant modal expan-
sion,” J. Acoust. Soc. Am., vol. 107, pp. 392–403, Jan. 2000.

[12] T. Sekiguchi and Y. Karasawa, “Wideband beamspace adap-
tive array utilizing fir filters for multibeam forming,” IEEE
Transactions on Signal Processing, vol. 48, pp. 277–284, Jan.
2000.

[13] H. Teutsch and W. Kellermann, “EB-ESPRIT: 2D localiza-
tion of multiple wideband acoustic sources using eigenbeams,”
in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP’ 05), Philadelphia, PA, US, Mar. 18–23,
2005, vol. 3, pp. 89–92.

[14] J. Meyer and G. Elko, “A highly scalable spherical microphone
array based on an orthonormal decomposition of the sound-
field,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Sig-
nal Processing (ICASSP’ 02), Orlando, FL, US, May 13–17,
2002, vol. 2, pp. 1781–1784.

[15] C. C. Lai, S. Nordholm, and Y. H. Leung, “Design of steerable
spherical broadband beamformers with flexible sensor config-
urations,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 21, pp. 427–438, Feb. 2013.

[16] L. Parra, “Steerable frequency-invariant beamforming for ar-
bitrary arrays,” J. Acoust. Soc. Am., vol. 119, pp. 3839–3847,
June 2006.

[17] E. Mabande, A. Schad, and W. Kellermann, “Design of robust
superdirective beamformers as a convex optimization prob-
lem,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP’ 09), Taipei, TW, Apr. 19–24, 2009, pp.
77–80.

[18] E. Mabande, A. Schad, and W. Kellermann, “A time-domain
robust implementation of data-independent robust broadband
beamformers with low filter order,” in Proc. Joint Workshop
on Hands-free Speech Communication and Microphone Arrays
(HSCMA’11), Edinburgh, UK, May 30 – June 1, 2011, pp. 81–
85.

[19] C. Lai, A study into the design of steerable microphones arrays,
Ph.D. thesis, Curtin University, Department of Electrical and
Computer Engineering., 2012.

[20] A. Trucco, M. Crocco, and S. Repetto, “A stochastic ap-
proach to the synthesis of a robust frequency-invariant filter-
and-sum beamformer,” IEEE Transactions on Instrumentation
and Measurement, vol. 55, pp. 1407–1415, Aug. 2006.

[21] C. Lai, S. Nordholm, and Y. Leung, “Design of robust steerable
broadband beamformers incorporating microphone gain and
phase error characteristics,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP’11), Prague, CZ,
May 22–27, 2011, pp. 101–104.

[22] M. Rübsamen and A. Gershman, “Robust adaptive beamform-
ing using multidimensional covariance fitting,” IEEE Transac-
tions on Signal Processing, vol. 60, pp. 740–753, Feb. 2012.

[23] S. Doclo and M. Moonen, “Design of broadband beamformers
robust against gain and phase errors in microphone array char-
acteristics,” IEEE Transactions on Signal Processing, vol. 51,
pp. 2511–2526, Oct. 2003.

[24] D. Levin, E. Habets, and S. Gannot, “Robust beamforming
using sensors with nonidentical directivity patterns,” in Proc.
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP’13), Vancouver, CA, May 26–31, 2013, pp. 91–95.

[25] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, Cambridge, UK, 2004.

[26] H. L. van Trees, Optimum Array Processing (Detection, Esti-
mation, and Modulation Theory, Part IV), Wiley-Interscience,
New York, US, 2002.

[27] I. Tashev, J. Droppo, M. Seltzer, and A. Acero, “Robust design
of wideband loudspeaker arrays,” in Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP’ 08), Las
Vegas, NV, US, Mar. 31 – Apr. 4, 2008, pp. 381–384.

[28] R. A. Kennedy, P. Sadeghi, T. D. Abhayapala, and H. M. Jones,
“Intrinsic limits of dimensionality and richness in random mul-
tipath fields,” IEEE Transactions on Signal Processing, vol. 55,
pp. 2542–2556, June 2007.

[29] S. Foster, “Impulse response measurement using golay codes,”
in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP’86), Tokyo, JP, Apr. 8–11, 1986, pp. 929–
932.

4485


