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ABSTRACT

Fetal Electrocardiograms (fECG) are an inexpensive and non-

invasive method to determine the heart rate (HR) of the fetus.

Large variations in the fetal HR is a good indicator that the

fetus is in distress thus allowing for clinical intervention. Al-

though advances have been made in the field of fetal HR de-

tection, more can be done to improve accuracy and efficiency.

The Variable Pulse Width - Finite Rate of Innovation (VPW-

FRI) method is a suitable method given it deals with pulse

parameters such as location, width and amplitude. This al-

lows it to automatically segment and identify the foetal QRS

complexes and R peak locations from compressed samples

which in turn would yield the fetal HR. Our method, which

includes model based denoising and multichannel capability,

is comparable to other methods involving machine learning,

wavelets and ICA.

Index Terms— ECG, Fetal Heart Rate, Finite Rate of In-

novation

1. INTRODUCTION

Fetal Electrocardiograms (fECG) are utilised as a tool for fe-

tal Heart Rate (fHR) and general cardiac monitoring. It was

introduced to the clinical setting around three decades ago

but its use has not seen the rapid development that was ex-

pected [9] especially over such a long time. Invasive fECG

is a viable option only during labour thus making noninvasive

fECG the only available tool for estimating diagnostic param-

eters such as fHR. Noninvasive fECG has the advantage of

being very low risk. However, it is difficult to detect the fetal

QRS complex as it is of very low power in comparison to the

maternal QRS. The QRS complex represents ventricular de-

polarization and is the most obvious part of an ECG tracing

which is why it is used for heart rate calculation.

This paper was inspired by the Physionet Challenge 2013,

which was to detect R-R intervals and fetal HR from noninva-

sive fECG. A comprehensive test data set was released where

the fetal R peak locations of the noninvasive fECG were an-

notated. The challenge was a reflection of a lack of significant
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progress in fECG processing despite the length of time it has

been in use and the better understanding of the limitations of

using noninvasive fECG for fetal monitoring. There is cur-

rently no standard way of measuring fetal HR as this requires

a consistently accurate detection of the fetal R peak and there-

fore the challenge sought to compare and contrast the various

methods to find a reliable one.

There were results on the test set of data provided for

the Physionet Challenge 2013 but not on the competition set.

Several methods were used and maternal ECG removal [10,

12], matched filtering [10, 11] and principal component anal-

ysis [10, 12] were amongst the methods used to achieve the

best results.

The VPW-FRI algorithm [2, 3, 7] was chosen for this

problem due to its ability to parameterize the fECG data and

identify individual pulses associated with the fQRS. This

is derived from VPW-FRI’s Lorentzian pulse model which

accounts for various widths and degrees of asymmetry. The

pulse model allows VPW-FRI to model signals as a sum of

pulses which can be compressed by calculating the four pa-

rameters associated with each pulse. For example in regular

ECG [2, 3] it has been shown that a single heartbeat with,

various morphologies, can be modelled using seven pulses

giving 28 parameters. Depending on the HR, this can lead

to substantial compression subject to the sampling rate of the

data. Compression using multichannel schemes [7] further

improves the compression ratio by assuming fixed location of

the pulses across various channels.

The capabilities of VPW-FRI was further extended to

identify locations and parameters of specific waveforms in

the signal which the original VPW-FRI was unable to do. It

showed that pulses of differing widths and amplitudes could

be separately identified. Therefore, fECG was a prime can-

didate to test the algorithm given the differing nature of the

maternal QRS and the fQRS. This together with the mul-

tichannel [7] nature of the data provided a strong basis for

VPW-FRI to perform well in R peak detection and thus HR

calculation.

This paper is organised as follows. Section 2 will give a

brief overview on the multichannel VPW-FRI scheme which

will be used in this paper. This will be followed by Section 3

which will outline the fQRS detection method. Section 4 will
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present the data and results and conclusions will be drawn in

Section 5.

2. VARIABLE PULSE WIDTH - FINITE RATE OF
INNOVATION

Only a summary of the VPW-FRI method in [7] will be shown

here for the sake of brevity and extensive discussions can be

found in [2, 3, 7].

The VPW-FRI is an extension of the FRI sampling and

reconstruction scheme which was designed for a certain class

of parametric signals which are not bandlimited. For instance

piecewise polynomial signals have discontinuities and jumps,

thus having an infinite bandwidth whereby Nyquist sampling

theorem is not applicable. The VPW-FRI algorithm expanded

upon this to include pulses with variable width by locating the

annihilating filter [1, 6] roots inside the unit circle instead of

being on the unit circle.

The time domain representation of VPW-FRI can be

viewed as

x(t) =
K=1∑
k=0

xk(t) (1)

=
K−1∑
k=0

∑
n∈Z

ck
ak

π(a2k + (t− tk − nτ)2)

+
K−1∑
k=0

∑
n∈Z

dk
t− tk − nπ

π(a2k + (t− tk − nτ)2)
,

where ak, ck, dk and tk are the parameters to be found.

From Eq. (1), it can be seen that the pulse is made up of

two components, a symmetric Lorentzian pulse and an asym-

metric pulse corresponding to the Hilbert transform of the

symmetric pulse.

Only the positive Fourier coefficients are sampled, at or

higher than the rate of innovation [1, 3, 6], and the negative

frequencies are replaced by the Hilbert transform of the pos-

itive frequencies. This allows us to add an additional degree

of freedom, asymmetry or dk, thus expanding the FRI model

further.

In this paper, we will use the multichannel approach seen

in [7]. Equation (2) shows the single channel version of the

annihilating filter.

⎡
⎢⎢⎢⎣

X[−1] . . . X[−K]
X[0] . . . X[−K + 1]

...
. . .

...

X[K − 2] . . . X[−1]

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

A[1]
A[2]

...

A[K]

⎤
⎥⎥⎥⎦ = 0, (2)

where X[k], k = 1, . . . ,K are the Fourier coefficients, A[k]
are the annihilating filter coefficients and K is the number of

pulses.

However, in the multichannel case, the root locations, tk
are assumed to be the same across all the channels, thus they

could be resolved at the same time using the common annihi-

lator,

⎡
⎢⎢⎢⎣

X1

X2

...

XM

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

A[1]
A[2]

...

A[K]

⎤
⎥⎥⎥⎦ = 0, (3)

where M = 2K.

The tk and ak parameters can be retrieved from the roots

of the annihilating filter coefficients [3, 7]. In practice, this

is solved using a Singular Value Decomposition (SVD). The

{ck}K−1
k=0 and {dk}K−1

k=0 coefficients, which are the real and

imaginary part of bk, respectively, can be solved using the

Vandermonde system [1, 6] over the complex numbers.

3. FETAL HEART RATE DETECTION

The fECG QRS complex can be found from the multichannel

abdominal ECG. The QRS is the most distinctive feature of

the fECG and therefore it is the easiest to differentiate. The

HR can be calculated from the R-R intervals. This can be

achieved by applying the VPW-FRI methods [7] together with

some model based width constraints.

All the relevant parameters, tk, ak and ck can be calcu-

lated from the samples and specific waveforms can be recon-

structed allowing for visual confirmation of the results.

The data is split into 1sec segments and each segment is

analysed separately. Since the VPW-FRI method outlined in

Section 2 has a model based denoising step included, only

the baseline wander needs to be removed which we achieve

with a 1Hz low pass filter. This works sufficiently well es-

pecially if the goal is to locate and reconstruct only the fetal

QRS compelxes.

The SVD which is used as a solution to the common anni-

hilator in Section 2 yields singular values by which we use to

discriminate the pulses. The second order derivative of these

singular values,d
2Σk

dk2 , as seen in Fig. 1, would show groups of

pulses characterized by Eq. (4)

Σk =
√
|c2k + d2k|, (4)

where Σk are the singular values from the SVD. The eigen-

vectors corresponding to the truncated singular values are

able to show exact locations, tk, of the pulses.

In the fECG, any peaks in d2Σk

dk2 above a threshold ε would

be of interest and the remainder of the singular values would

be discarded. In most cases, the fetal QRS can be found from

the second and third peak, but allowances have to be made for

the weaker fQRS pulses which may not be as prominent.

As shown in [7], QRS pulses are associated with the first

peak. In this case, this would represent the maternal QRS
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Fig. 1. Singular values of common annihilator

peaks. Therefore, the main maternal QRS pulse would be

eliminated by not considering these set of pulses.

Further filtering of the pulses is required and only pulses

with a pre-defined width of not more than 15 samples are re-

constructed.

This method makes use of all the channels as the common

annihilator in Section 2 is being used. This allows channels

with prominent fQRS pulses to compensate for channels with

noise or weaker fQRS pulses. However, if more than two out

of the four channels in this case are noisy, the results will

be inaccurate as pulses will not appear as prominently in the

singular values.

The algorithm described in this section can be used for

compression and detection of pulses which allows for conve-

nience as it can be run from the same model. Also, additional

or fewer channels can be used by simply modifying Eq. (3).

It also utilizes the ESPRIT noise removal as shown in [3,5,7].

This is further helped by the pruning of the matrix of eigen-

vectors which serves as a low rank approximation.

4. RESULTS

4.1. Data

The data set from the Physionet Challenge was split into three

sets A, B and C where each recording within the set was 60

seconds long. The Set A was a training set with annotations

for the fetal R peaks, whereas the Set B was a test set with-

out annotations and finally the Set C was a hidden set which

was meant for scoring the competition. In this work, only 25

recordings of the dataset A and 100 recordings of the dataset

B were used which comprises of a total of 125 recordings of

data.

4.2. Results

The results varied for the data sets. For set A, evaluation was

made easier by the presence of annotations. Out of the 25

sets, the algorithm worked well in 19 sets. In the other 6 sets,

the algorithm was not able to pick out the fQRS consistently

and was not accurate.

Two examples of results from set A can be seen in Figs. 2

and 3. In Fig. 2, the detected fetal R peaks are shown together

with the annotations which show a high degree of accuracy.

As can be seen even with the R peak at 1.8s, it could be de-

tected despite being very close to the maternal QRS complex.
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Fig. 2. Fetal QRS reconstruction of signal from Set A of Phy-

sionet Challenge 2013

The fQRSs can be reconstructed fairly accurately as well

as can be seen in Fig. 3. Again, the fetal R peak around 0.2s
was reconstructed fairly accurately despite it being in very

close proximity to the maternal QRS. This shows the recon-

structed pulses were able to detect and capture the morphol-

ogy of the fQRS. More pulses can be used to improve the ac-

curacy of the reconstruction of the fQRS but trying to detect

those pulses would be very difficult and very costly.

Out of the 25 sets, the algorithm was able to consistently

pick out the fQRS in 19 sets. There was a fQRS detection rate

of 98.2% and the detected pulses were within an accuracy of

±7msec from the Physionet annotated database.

In the remaining 6 sets in which the performance was not

as impressive, the detection rate was 41%. This was mainly

due to fact that either the pulses were too small to be dis-

tinguished by the singular values or the large SNR distorted

the small fetal QRS complexes. It has to be mentioned that

a more intensive sorting process was attempted based on the

widths, amplitudes and locations, but this resulted in overfit-

ting of the data. It became too specific in that it affected the

accuracy of results of other recordings.

Since recordings from set B are not annotated, the results

will have to be observed and visually inspected for accuracy.

As can be seen from Fig. 4 and 5, the algorithm can detect

fQRS’s of varying prominence. From visual inspection and

observation, the results seem to be of roughly the same accu-

racy as those in set A.

The emphasis on a general scheme designed to handle

big volumes of data and real time processing addresses a

real concern for mobile health devices and remote moni-

toring schemes. Given that VPW-FRI is a HR dependant

4473



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−30

−20

−10

0

10

20

30

40

50

60
Reconstruction of Fetal QRS

Time(s)

A
m

pl
itu

de

Abdominal ECG
Reconstructed Fetal QRS
Pulse

Fig. 3. Fetal R peak detection of signal from Set A of Phys-

ionet Challenge 2013 with annotation
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Fig. 4. Fetal R peak detection of signal from Set B of Phys-

ionet Challenge 2013 without annotation

compression scheme, results can be seen from Fig. 6 that on

average only 50 − 80 samples were being used for compres-

sion in each 1sec window. Figure 6 shows, as a reference, the

compression ratios when a certain number of maternal and

fQRS’s are present. For example, 2 maternal QRS’s and 3

fQRS’s translate to a HR of 120 and 180, respectively. The

plot assumes a linear increase in HR for both mother and

fetus. The compression ratios increase as more channels are

added due to the multichannel nature of the algorithm. Also,

on average, only 10− 20 complex samples per window were

used for computation of the results since only location, tk, is

needed. This is in keeping with the idea of a general scheme

which is efficient and which has a comparable accuracy to

other methods [10–12].

5. CONCLUSION

The achievement of this paper is trying to integrate a sampling

and compression scheme, de-noising, multichannel detection

and diagnostics into one model. This is being done in pur-

suit of an efficient algorithm which has many capabilities to

reduce computational cost and implementation complexity.

Several of the ideas from the Physionet Challenge con-
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Fig. 5. Fetal R peak detection of signal from Set B of Phys-

ionet Challenge 2013 without annotation
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Fig. 6. Compression ratio for Fetal ECG

testants with the best scores appear in some form within the

VPW-FRI framework. As mentioned in Section 2, the mater-

nal QRS removal [10,12] appeared in the form of eigenvector

selection where the main pulses associated with the maternal

QRS were not selected.

Of course improvements can be made which is part of

the future work and research to be conducted. A better de-

noising scheme could be developed as the current de-noising

can only effectively handle signals with 10 dB or more of Ad-

ditive Gaussian White Noise (AWGN). Also, more specific

schemes with regards to certain types of wave or arrhythmia

detection could be developed. A balance between generality

and accuracy has to be achieved.

Also, additional research that can be done includes real

time implementation using [4] which has a polling method

for determining Diracs in real time windows. This would be

useful for implementation in ECG monitors and devices.
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