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ABSTRACT

Remote photoplethysmography (rPPG) enables measuring
heart rate from recorded skin color variations with consumer
cameras. Recent research has aimed to improve the signal
strength of color variations caused by heart beat by using
independent component analysis (ICA) technique or analyz-
ing chrominance-based model. In this paper, we argue for
treating this emerging problem in a novel aspect – proposing
a learning-based framework to accommodate multiple and
temporal feature and yielding significant and robust improve-
ment. Using support vector regression (SVR) on published
chrominance-based feature improves the root mean square
error (RMSE) from 22.7 to 7.31 as well as correlation coeffi-
cient (CC) from 0.30 to 0.77. With proposed novel multiple
feature fusion and multiple segment fusion techniques, we
achieved the best estimation result with RMSE 5.48 and CC
0.88. Meanwhile, the proposed framework can be extended
to other promising features.

Index Terms— heart rate, photoplethysmography (PPG),
regression learning

1. INTRODUCTION

Photoplethysmography (PPG) that detects the optical absorp-
tion variation of human skin surface was first described in
the 1930s [1] and is popular because it can be used non-
invasively. PPG can also detect blood volume variation
caused by heart beat and is suitable for monitoring the human
heart rate.

Several studies have shown that PPG could measure the
variation in a distance [2], and could be used to measure heart
rate [3, 4]. This technique is called remote-PPG (rPPG).
Other research confirmed that PPG works well under ambient
light conditions [5, 6]. A demo that amplifying and visu-
alizing the skin color variation of video taken by consumer
camera in ambient light environment has also been showed
[7].

However, in the research conducted by Rhee et al. and
Poh et al., they found that PPG does not work well when
motion-induced signal was involved [8, 9]. Kimura et al.
showed that skin color variation caused by blood volume vari-
ation is more significant on green channel than on red or blue

channels because of optical properties of human skin [10].
Poh et al. used independent component analysis (ICA) tech-
nique to separate color variation from the color signal to es-
timate human heart rate [6]. Another method that measures
heart rate based-on skin chrominance-based model analysis
was proposed by de Haan and Jeanne [11]. Both Poh et al.
and de Haan and Jeanne use different characteristics of color
channels and face detection tools to maximize the blood vol-
ume variation and minimize the effect of moving human face;
moreover, they chose the frequency with the biggest ampli-
tude as the estimated heart rate and discarded the information
behind the amplitudes of other frequencies [6, 11].

In this work, we aim to measure human heart rate using
videos taken by consumer cameras under ambient light condi-
tions. For robust and scalable heart rate detection, we propose
a novel learning-based framework to accommodate more rich
features. We compare and leverage the features proposed by
several state-of-the-art research to train the model.

In this paper, we make the following contributions:

• To our best knowledge, we are the first to estimate heart
rate by multiple rPPG features with a brand-new ex-
tendable learning framework.

• We devise novel mechanisms for multiple feature fu-
sion and adaptive normalization schemes.

• We further propose multiple segment fusion by lever-
aging the temporal redundancy.

2. METHODS

2.1. Preprocessing

Heart rate detection using rPPG is based on face color varia-
tions. We use OMRON OKAO vision 1 face detection tools to
locate each face in the video and set the entire face rectangle
as our region of interest (ROI). This step also removes possi-
ble noises created in the background. In case face detection
fails, the latest detected face position would be used. Then
we compute the mean value of all pixels in the ROI on R, G,
B channels for all frames. We use RAWC(t) to describe the
color signal in time domain. Here C ∈ {R,G,B} stands for

1http://www.omron.com/r d/coretech/vision/okao.html
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Fig. 1. (a) is the design of experiment. The participant is asked to wear a heart rate sensor to get the ground truth of heart
rate while being video-recorded by the camera. Some of the videos and corresponding ground truths are used to train the
model of SVR and others are used in testing. Take one sample video for example, the blue line in the heart rate-time graph
in the bottom is the estimation result and the black line represents the ground truth. (b) is the system flow of our method.
We first use face detection to extract color signals of human faces. Then dividing color signal into segments if corresponding
multiple segment fusion techniques are used. Those time domain signals are processed by the proposed methods to derive
frequency domain amplitude features. Different from prior studies, we use frequency domain results as mid-level features for
our proposed learning framework, which delivers more robust and extendable results. The procedures with yellow tag are the
main differences between previous works and our work.

three color channels, and t = 1, 2, 3, ... stands for different
frames. We have tried learning with this time domain color
signal and it seems that to learn pattern in such signal is un-
successful.

2.2. Frequency domain features

We use frequency domain features to find the color variation
pattern corresponding to heart beat waveform. Fourier trans-
form is the most used and standard form to transform sig-
nal from time domain to frequency domain. Three frequency
domain features are used in the following steps. We imple-
ment fast Fourier transform (FFT), an approach of discrete
Fourier transform (DFT), on RAWC(t), then computing its
amplitude spectrum to get FTC(f). In this paper, f stands
for different frequency, and it is our first low-level feature.
For mid-level frequency domain features, we adopt ICA pro-
cessed feature proposed by Poh et al. We use all three com-
ponents of ICA processed feature and name them ICAN (f),
where N ∈ {1, 2, 3} stands for different components. An-
other mid-level feature Xs − αYs that proposed by de Haan
and Jeanne is adopted and named CB(f). Please note that all
features FTC(f), ICAN (f), CB(f) are frequency domain
amplitude spectrum and only the data with frequency between
0.75 to 4 Hz (45 to 240 bpm) are used for learning. The fre-
quency range is considered as possible human heart rate. Note
that the proposed framework can accommodate other promis-
ing features as well.

2.3. Model learning

In prior research, in an ad-hoc manner, the frequency with the
highest amplitude in the frequency domain features is con-
sidered the only heart rate frequency and all of the amplitude
information behind non-peak frequency is ignored no matter
how big or small the amplitude is. We know that blood vol-
ume variations caused by heart beat is not perfect sine wave
and the face motion further causes uncertainties. Therefore
every value of the features may contain the information of
heart beat and noises. For robust detection, we argue for
the learning-based methods (e.g., support vector regression
(SVR)) over the prior low and mid-level features. Meanwhile,
different novel fusion strategies are considered as well.

2.3.1. Multiple feature fusion

These three features mentioned in section 2.2 are proposed
under different assumptions and have promising results on
different cases. So we propose multiple feature fusion to
leverage their advantages. The amplitude spectrums derived
from three kinds of features have different ranges. Before we
do the fusion process on multiple types of features, we nor-
malize these features in advance by the following equations:

nFTC(f) =
FTC(f)

µFT
(1)

nICAN (f) =
ICAN (f)

µICA
(2)

nCB(f) =
CB(f)

µCB
(3)
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where µFT , µICA, µCB are the mean of FTC(f), ICAN (f)
and CB(f).

This normalization has some good properties, i.e., retain-
ing the physical meaning of amplitude spectrum, since it does
not change the sign. Previous works have shown that green
channel has better result than red or blue channel in FTC(f)
[10] and component 2 is usually a better choice than com-
ponent 1 or 3 in ICAN (f) [6], so we keep the correlations
between different colors and different components. We also
want to keep the values of different features comparable, so
we decide to divide by mean rather than divide by maximum,
since that mean value is more representative than maximum.
After normalization, we have three features in similar range
and can concate several features together as new input pattern
of SVR.

2.3.2. Multiple segment fusion

To achieve the best estimation, a key question here is to deter-
mine how long the video should be. The variation of human
heart rate over time makes that peak of frequency domain am-
plitude feature extracted from the long video may not match
the designated heart rate. The features extracted from short
videos are easy to have a peak value caused by noises but not
the color variations from the heart beats. So we divide a long
video into several short segments and use the data of segments
to get better estimation of the long video. Two approaches are
used in this paper. The first one is to learn our model with fea-
tures extracted from short video segments and the results of
several continuous segments are averaged; we called it late
fusion method. The second one is to learn our model with
the features that concate subfeatures extracted from several
continuous short segments together, we called it early fusion
method. By these methods, we can avoid the disadvantages of
long video features and reduce the deviations made by short
video features.

2.4. Evaluation methods

Bland-Altman plot (BA plot) [12] is used for analyzing the
agreement between two different assays. The differences be-
tween results predicted by our methods and the ground truth
recorded by wearing heart rate sensor are plotted against the
average of both systems. We calculated the mean of the dif-
ference and showed in BA plot. The standard deviation (SD)
is also calculated and 95% limits of agreement (±1.96SD) are
shown.

The root mean square error (RMSE) and correlation co-
efficient (CC) also used to figure out the correlation between
our heart rate estimation and the ground truth. It is worthy
of mention that RMSE may be small if all estimations are
the values of mean heart rate, and CC cannot tell us whether
estimation and ground truth changes in 1:1 or not. While ana-
lyzing the estimation result, it is preferred to review these two
values at the same time.

3. EXPERIMENTS

3.1. Dataset

We use SONY XDR-XR500 video camera to record the
videos. All videos are recorded in 24-bit color (R, G, B three
channels × 8-bits/channel) at 29.97 frames per second with
resolution 1920 × 1080 and saved in mp4 format. Since we
use mean of ROI to do the very first color signal processing,
such high resolution is not necessary for our method.

Four Asian males between the age of 22 and 25 partici-
pated in our preliminary study, they wore POLAR WearLink
transmitter with Bluetooth to get the heart rate data when be-
ing video-recorded. Participants were asked to sit in front of
computer monitors and could behave normally except leaving
the seat. Some of them wore glasses and earphones.

3.2. Results

For each participant we recorded a video of 10 minutes and 50
seconds. Then, we divided the video into two parts, each was
5 minutes and 25 seconds long. In the learning process, we
either did training with the first part of the video and testing
with the second part or the other way around.

In our first experiment, we apply 30-second window with
5-second stride and get a total of 480 samples from four
videos. Estimating results of three features without learning
is to choose the frequency having maximum amplitude be-
tween 0.75 to 4 Hz in FTG(f), ICA2(f), CB(f). We use
libsvm [13] to run SVR learning and every time we train and
test with 240 samples respectively. Table.1 and Fig.2 show
the result of learning-based and traditional methods by the
form of RMSE and CC. The result of SVR with single feature
has significant improvements in all three features. We observe
that samples seldom have big deviation in learning cases. It
implies that our model can distinguish the pattern of noise
from the heart rate. With multiple feature fusion techniques,
learning with FT+CB feature has best result RMSE 7.28 and

SVR SVR SVR SVR SVR SVR SVR
FTG ICA2 CB (FT) (ICA) (CB) (FT+ICA) (FT+CB) (ICA+CB) (FT+ICA+CB)

RMSE 26.90 32.01 22.72 7.70 10.09 7.31 9.15 7.28 9.49 8.90
CC 0.19 -0.07 0.30 0.74 0.45 0.77 0.59 0.77 0.54 0.62

Table 1. RMSE and CC of the estimation using traditional methods and SVR learning with multi-feature technique.
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Fig. 2. (a) is the RMSE and (b) is the CC of multiple feature
fusion experiment. Numbers could be found in Table.1.

CC 0.77, although further improvement in comparison to
single feature learning is not obvious here.

Multiple feature fusion and multiple segment fusion could
be used at the same time. Fig.3 shows the result of learn-
ing with different feature combination and different setting
of multiple segment fusion. Learning with features extracted
from 5-second window leads to worse result in single feature
learning as comparing with features extracted from 30-second
window. But while learning with multiple features, the perfor-
mance of 5-second window is better than 30-second window
in most cases. With multiple features, the model could learn
to figure out noise or heart rate signal by comparing them and
choosing more reliable ones. The advantage is more help-
ful while learning from short noisy segments. In the experi-
ment of using single feature and multiple segment fusion, all
features get better results comparing to single segment cases.
Multiple segment fusion reduces the effect of noisy features
by referencing several segments at a time. The CB feature is
particularly good under this setting. Learning with CB fea-
ture and multi-segment early fusion has RMSE 6.06 and CC
0.84. Both early fusion and late fusion of multiple segment
techniques have improved when comparing to the results that
learned with single windows. SVR learning using FT+CB
features and multi-segment late fusion has the best result. The
RMSE is 5.48 and CC is 0.87 respectively. Fig.4 shows a typ-
ical BA plot of SVR learning estimation.

4. CONCLUSION

In this paper, we propose a novel method for learning-based
framework for heart rate detector by leveraging the mid-level
rPPG based features. We also investigate different fusion
strategies ( along with the normalization schemes from differ-
ent modalities) for utilizing feature and temporal redundan-
cies. The experiment achieves significant improvements over
consumer videos in the ambient light environment. Compar-
ing with prior state-of-the-art, we can reduce the detection
error from 22.72 to 5.48 in terms of root mean square error.
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Fig. 3. (a) is the RMSE and (b) is the CC of estimation of SVR
learning with different combination of features and/or differ-
ent multi-segment fusion strategies. Blue, red, green and pur-
ple bars show the results of 30-second window, 5-second win-
dow, multi-segment late fusion and multi-segment early fu-
sion. For multi-segment experiments, we use 30-second win-
dow and divide them into six 5-second segments.

Fig. 4. BA plot of heart rate detected from wearing sensor and
heart rate estimation of SVR learning with FT+CB features
and multi-segment late fusion technique. The experiment has
mean bias -0.18, standard deviation 5.49, RMSE 5.48 and CC
0.87.
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