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ABSTRACT

This paper proposes an online Bayesian method to detect
change points in auto-regressive (AR) processes with un-
known model orders. The AR model is frequently used in the
spectral analysis of RR series extracted from electrocardio-
graphic signals (ECG) [1, 2]. By relaxing the model order
constraint, we aim to detect apnea-bradycardia (AB) episodes
from abrupt changes in the model space. An efficient recur-
sive algorithm inspired from the work of Godsil et al. [3, 4]
is proposed to update with fixed complexity the joint pos-
terior distribution of the AR coefficients and model orders.
Simulation results show fast convergence of the estimated
distribution, thus making it an efficient tool to detect underly-
ing AR model changes in time series. For AB detections with
annotated ECG data, the detection sensitivity (TP/(TP + FN))
reaches 98% over a total of 50 episodes with 92% specificity
(TN/(TN + FP)). We also discovered an interesting property
in terms of detection delay (−3.64s ± 4.34), compared with
the experts’ off-line annotations. The negative mean in de-
tection delay suggests that AR model changes might occur
before the onset of AB episodes while from the clinical point
of view, it is essential to achieve reliable early stage detec-
tion of AB episodes to enable the initiation of quick nursing
actions [5].

1. INTRODUCTION

AB episodes are defined as a respiratory pause, accompa-
nied with a fall in heart rate. These episodes are common
in preterm infants and may seriously compromise oxygena-
tion and tissue perfusion and lead to neurological morbidity
or even infant death [6, 7]. In the domain of biomedical signal
analysis and in particular for the ECG signal, the AR model is
traditionally used to compute the power spectrum density for
RR interval time-series. Broadman et al. studied the impact
of using different criteria (Akaike, Parzen, Rissanen) in de-
termining the model order and proposed a fixed optimal order
for the spectral analysis of RR series [2]. Unlike the previous
studies based on the power spectrum analysis of RR series
(first proposed by [1]), we adopt here a Bayesian approach by
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considering the model order as a random variable and the goal
is to detect AB episodes by abrupt changes in the AR model
space.

The idea is to fully exploit the recurrence relations of the
RR series using AR models with unknown coefficients and
orders. Indeed, the short-time stationary nature in the RR
signal (as an indicator of the heart rate variability) is ideally
modeled by the slowly-changing AR coefficients and model
orders [1] while the non-stationary event that corresponds to
apnea-bradycardia episodes results in abrupt changes in both
the AR coefficients and model orders. It is then possible to
detect AB events by investigating the evolution of these pa-
rameters.

Inspired from the previous works of J. Godsill et al. in
the off-line AR model selection and parameter estimation
problem [3, 4], we propose to update online and recursively
the joint posterior distribution of the AR coefficients and
orders while the marginal distribution of model orders is
achieved by integrating out the normally distributed AR co-
efficients. A sufficient number of model orders are included
for the posterior distribution evaluation to cover a large scale
of physiological heart rate variability origins [8]. We also
optimize the computational complexity and robustness of the
algorithm by keeping track the Cholesky factor of the covari-
ance inverse of the AR coefficients’ estimation, since it is
always well-defined, monotonously increasing by construc-
tion and better conditioned than the covariance matrix and its
inverse. It is shown that the update cost is O(k2) for AR(k)
and does not increase over time, thus allowing an efficient
clinical real-time implementation. Compared with previous
works on the detection of AB events by using the Hidden
Semi-Markov models (HSMM) [9], the proposed method
does not use model parameters trained from a heterogeneous
database since the estimation of the joint distribution and
detection of distribution shifts are performed simultaneously
upon each single patient and consequently there is no inter-
patient variabilities issue to be dealt with. Higher sensitivity
rate and earlier detections are also important improvements
in performance of the proposed method.

The paper is organized as follows. Section 2 details the
signal model and the on-line recursive update algorithm.
Simulation results are given to illustrate the fast convergence
property of the joint distribution estimation. Based on the
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convergence property, the AR innovation noise level is de-
fined to detect AB events in real clinical database. Section 3
illustrates results on the annotated database of ECG signal ac-
quired from the target population of preterm infants suffering
from AB episodes. Finally, in section 4 we discuss possible
extensions of our work.

2. METHOD

2.1. Signal Model

A time serie {yn}1,...,N modeled by an AR process obeys :

yn =

k∑
i=1

α
(k)
i yn−i + εn, (1)

for which k ∈ N denotes the model order and εn the in-
novation process. The latter is supposed to follow an i.i.d.
Gaussian distribution N (0, σ2

ε ) for its well-behaved mathe-
matical properties even though other marginal distributions
such as Laplace process [10], generalized Laplacian [11] and
geometric α-Laplace distributions [12] are also extensively
studied as data models.

The matrix form of the AR process writes also :
yk+1:n = Y(k:n−1)ᾱ

(k) + ε (2)
where yk+1:n = [yk+1, . . . ,yn]t represents the observation

data of increasing size, ᾱ(k) = [α
(k)
1 , . . . , α

(k)
k ]t the AR co-

efficient vector and Y(k:n−1) the (n− k)× k Toeplitz matrix
whose first line is yt

k:1 and the first column is yk:n−1.
The model order selection problem is addressed by J.

Godsill et al. [3, 4] within a Bayesian framework, in which
reversible jump Markov chain Monte Carlo (MCMC) algo-
rithms [13] are developed to perform the required integration
by stochastic simulation. They found that the marginalization
technique in the sampling of model orders (by integrating
out AR coefficients) is more efficient and robust numerically.
Similar results in partially collapsed MCMC samplers are
also discussed in the blind deconvolution problem [14, 15].
In the current study, we adopt the Gaussian assumption con-
cerning the AR coefficients ᾱ(k) ∼ N (0, σ2

αIk) to allow its
integration and the marginal posterior law of the model order
writes according to [3] :

p(k|y1:n, σ
2
α, σ

2
ε ) ∝

p(k)
√
|Ck,n|

σkα
exp

(
µt
k,nC

−1
k,nµk,n

2

)
(3)

where p(k) denotes the prior distribution and

C−1
k,n = σ−2

ε Yt
(k:n−1)Y(k:n−1) + σ−2

α Ik, (4)

µk,n = σ−2
ε Ck,nY

t
(k:n−1)yk+1:n. (5)

A normalization is imposed for a given order range :
kmax∑
k=kmin

p(k|y1:n, σ
2
α, σ

2
ε ) = 1. (6)

To access the joint AR model order and coefficients distri-
bution, we use the following conditional distribution of ᾱ(k)

given AR(k) [3]:
ᾱ(k)|k,y1:n, σ

2
α, σ

2
ε ∼ N (µk,n,Ck,n).

It is essential then that the update cost of Eq. (3) does not
increase with time even though Ck,n and µk,n involve ma-
trices whose dimensions increase with n, such as Y(k:n−1)

(cf Eqs.(4) (5)). In other words, an efficient recursive scheme
is required to update {|Ck,n| , µt

k,nC
−1
k,nµk,n} with fixed

complexity in regard to n. We note that unlike the MCMC
framework [3, 4] that solves the model selection and param-
eter estimation problem off-line, the objective of this paper
is to detect as early as possible abrupt changes of both AR
coefficients and model orders based on online non-stationary
observations.

2.2. Recursive update

We propose the recursive updates of Eq. (3) using the rank-
1 Cholesky factor update of C−1

k,n. This is not only possible
but also numerically stable because the covariance inverse is a
positive-definite matrix with increasing eigenvalues by defini-
tion (cf Eq. (4)). Its Cholesky factor is also better-conditioned
than the covariance and the inverse itself. The rank-1 update
is based on the following relation from Eq. (4) :

C−1
k,n = C−1

k,n−1 + σ−2
ε yn−1:n−ky

t
n−1:n−k. (7)

Notice that C−1
k,n is always a k×k matrix.We apply the rank-1

Cholesky factor update procedure (see details in [16]):
Fk,n = cholupdate(Fk,n−1, σ

−1
ε yn−1:n−k), (8)

with Fk,n (and Fk,n−1) the upper-triangular matrix such that
Ft
k,nFk,n = C−1

k,n (and Ft
k,n−1Fk,n−1 = C−1

k,n−1 resp.). The
rank-1 Cholesky factor update operation costsO(k2) and also
simplifies the term |Ck,n| since :√

|Ck,n| =
(∏

diag(Fk,n)
)−1

, (9)

where diag extracts the diagonal part of a square matrix and∏
calculates the product of all components.
From Eq. (5) we can rewrite :

µt
k,nC

−1
k,nµk,n = σ−4

ε yt
k+1:nY(k:n−1)Ck,nY

t
(k:n−1)yk+1:n

= σ−4
ε yt

k+1:nY(k:n−1)(F
−1
k,nF

−t
k,n)Yt

(k:n−1)yk+1:n

=
∣∣∣σ−2
ε F−t

k,nRk,n

∣∣∣2 , (10)

where Rk,n = Yt
(k:n−1)yk+1:n can be updated by :

Rk,n = Rk,n−1 + yn · yn−1:n−k (11)
Note that the left division of a lower-triangular matrix in

Eq. (10) costs O(k2).
To recapitulate, the pseudo-code of the recursive update

algorithm is given in Tab. 1. It costsO(k2) in complexity and
requires the storage of an upper-triangular matrix Fk,n (k×k

4462



in dimension) and a column vector Rk,n of k × 1, both fixed
with respect to n and the observation dimensions.

Algorithm 1 Recursive update of AR order probability
1: for k ∈ {kmin, . . . , kmax} do . Initialization
2: Fk,kmax = 1

σα
Ik

3: Rk,kmax = [0, . . . , 0︸ ︷︷ ︸
k

]t

4: end for
5: for n = kmax + 1, . . . do . main loop

6: for each model k ∈ {kmin, . . . , kmax} do
7: Update Fk,n using Eq. (8);
8: Update Rk,n using Eq. (11);
9: Evaluate Eq. (3) using Eqs. (9)(10);

10: end for
11: Normalize p(k|y1:n, σ

2
α, σ

2
ε ) using Eq. (6).

12: end for

2.3. Simulation results

The simulation tests on stationary AR processes is designed to
validate the on-line model selection algorithm. A total of 100
time series are generated using AR model with orders ranging
from 3 to 11 for 1000 samples. The AR model coefficients are
generated using random poles within the unit circle to ensure
the process stability whereas σ2

α = 1 is arbitrarily fixed in
the algorithm. The AR process noise variance σ2

ε = 0.2 is
supposed to be known. Prior distribution p(k) is supposed to
be uniform from kmin to kmax since we privilege here that the
data speak for themselves.

Typical results of the marginal posterior probability of
model orders are illustrated in Fig. 1(a) and the covari-
ance norms’ decay are shown in Fig. 1(b) for all models
AR(k) in the same example : both the AR coefficients in
each model AR(k) and the marginal model order distribution
p(k|y1:n, σ

2
α, σ

2
ε ) converges rapidly. It is also observed (but

not illustrated due to space limit) that the Euclidian distances
between the estimated ᾱ(k) and the true AR coefficients
converge in a similar manner.

2.4. AR Model shift detection

In a perfectly stationary case, the AR(k) coefficients’ esti-
mate covariance Ck,n is decreasing as n augments by con-
struction (cf Eq. (4)). It is confirmed in simulation results
and the evolution of |Ck,n| in Fig. 1(b) also shows the con-
vergence speed. Therefore, the joint posterior probabilities
p(ᾱ(k), k|y1:n, σ

2
α, σ

2
ε ) converge to a series of Dirac func-

tions, each having a weight factor equal to p(k|y1:n, σ
2
α, σ

2
ε ).

This interesting property is the key to the non-stationarity de-
tection from two distinct AR models.

The model shift detector on the other hand, is supposed to
work on non-stationary time series for which change points

delimits the short-time stationary periods. We define the AR
process noise level by integrating out both the AR coefficients
and the model order :

ε̂2n =
1

L

kmax∑
k=kmin

∣∣yn−L+1:n −Y(n−L:n−1)µk,n
∣∣2

p(k|y1:n, σ
2
α, σ

2
ε ), (12)

for which a moving window of length L ≥ 1 is applied. It is
a reasonable approximation of

1

L

kmax∑
k=kmin

∫ ∣∣∣yn−L+1:n −Y(n−L:n−1)ᾱ
(k)
∣∣∣2

p(k, ᾱ(k)|y1:n, σ
2
α, σ

2
ε )dᾱ(k)

by taking p(ᾱ(k)|k,y1:n, σ
2
α, σ

2
ε ) = δ(ᾱ(k) − µk,n) due to

the fast convergence property. The measured noise level ε̂2n
shown in the upper panel of Fig. 2(b) corresponds to a simu-
lated AR model change (lower panel of Fig. 2). It is evident
that the shift in AR model space is associated with the noise
level increase.
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Fig. 2. Detection of AR process model change. The simulated change point
occurred at the 1000-th sample (lower panel). The AR process noise level
surges in the upper panel from the 1002-th sample till the 1011-th sample
and is followed by stabilization.

In the following test, a simple relative thresholding on
the ε̂2n is used to detect change point of AR models and
re-initiates the recursive algorithm in Tab. 1, from which
{p(k|y1:n, σ

2
α, σ

2
ε ), µk,n} are used to update ε̂2n with Eq. (12).

3. EXPERIMENTS ON AB DETECTION

For the detection of AB events in real ECG signals, we used a
database with manual annotations on the 50 RR series from 32
preterm infants. The proposed algorithm is applied on the RR
series extracted from raw ECG signals (cf [17] for details) in
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Fig. 1. Typical simulation results using an AR(4) of 1000 points (see x-axis in both (a) and (b)). The marginal posterior distribution of the model order
(ranging from 2 to 20 of y-axis) is presented in (a) with grayscale proportional to the probability value, while in (b) are illustrated the norms of ᾱ(k) estimation
covariance |Ck,n| for all k : quick convergence relative to the initial values is observed and final decays range from 10−3 to 10−4.

the database. It is a real challenge due to the off-line diagnosis
procedure of experts.

The maximum AR model order Qmax is set to 20 to cover
a large scale of physiological heart rate variability origins [8]
for real ECG experiments. The same {σ2

α, σ
2
ε } are used as in

the simulation tests and the window length L = 10 is set for
the update of ε̂2n in Eq. (12). An AB event is detected when
the ε̂2n surpasses a thresholding level (10 times the mean level
of the previous minute).

We compared the overall performances relative to the
HSMM method proposed in [9] for which the same ECG
database is used. True positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) were determined
for each sample by comparing the obtained detections with
the available annotations. TP occur when a detection falls
within a 20 s window, centered at the annotation. The window
is chosen to be large enough to evaluate the detection delay.
All other detections are noted as FP while annotations without
corresponding detections are considered as FN. Since each
entry in the dataset contains an annotated AB event, the num-
ber of TN is calculated by blength of entry(s)/20c − FP− 1.
Figures of merit (sensitivity and specificity functions) are
then evaluated and reported in Tab. 1. One remarkable ad-
vantage of our method is the ability to capture AR model
changes that take place priorly to the onset of AB events and
thus yield an enormous gain in the detection delay, though
this is done at the cost of a minor increase in the number of
FP detections (lower SPC level).

4. CONCLUSION AND PERSPECTIVES

A novel online detection algorithm of autoregressive model
change is presented in the present study with applications in

Table 1. Comparison of sensitivity, specificity and detection delay results

Method SEN (%) SPC (%) Delay (sec)
HSMM [9] 90.38 92.23 0.92± 3.56
AR Shift 98.00 91.17 −3.67± 4.34

the automatic surveillance of the apnea-bradycardia events in
preterm infants, a difficult problem in the modeling and ex-
ploiting of the dynamics in biomedical time series. Model
simplicity associated with optimized computing efficiency are
the key issues in real time implementation of the proposed al-
gorithm. Results obtained from simulated AR signals demon-
strate the interest of the proposed method : 1) the joint poste-
rior distributions of the AR model order and coefficients can
be estimated on line recursively with fixed computation com-
plexity, 2) they converge rapidly and can be used as a reliable
marker of model shift. The AR process noise level is designed
to integrate in a Bayesian manner the model choice and pa-
rameter estimation and to characterize the rapid shift in the
AR model space. Experiments’ results on real ECG data with
experts’ annotations confirm the feasibility of the proposed
method.

In the future, we aim at extending the current algorithm
framework to include several interesting aspects : 1) testing
different prior distributions of model orders p(k) in the con-
text of preterm infants suffering from AB episodes with clin-
ically plausible prior knowledge, 2) relaxing the kmax con-
straint and track the AR order distribution in a particle filter
manner. We are also encouraged to enrich the experimental
validation by comparing with other online segmentation al-
gorithms, in particular the MCMC-based batch segmentation
procedure by Punskaya et al. [18].
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