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ABSTRACT

Compressive sensing has recently been applied to electrocar-
diogram (ECG) acquisition and reconstructionwith the aim of
lowering energy consumption and sampling rates in wireless
body area networks for ambulatory ECG monitoring. How-
ever, most current methods only adopt a sparse prior on the
ECG wavelet representation. In this paper, we propose to fur-
ther exploit the wavelet representation structure by incorpo-
rating two properties in the formulation of the optimization
problem: the exponentially decaying magnitude of the detail
coefficients across scales and the accumulation of signal en-
ergy in the approximation subband. We derive a weighted
!1 minimization algorithm, based on a maximum a posteriori
(MAP) approach, that leads to a significant reduction in the
number of measurements and superior reconstruction perfor-
mance compared to current CS-based methods with applica-
tion to wireless ECG systems.

Index Terms— Compressed sensing, electrocardiogram,
wavelet transform, wireless body area networks (WBAN).

1. INTRODUCTION

Due to recent technological advances in the area of wire-
less body area networks, long-term and ubiquitous real-time
ECG monitoring are becoming increasingly popular. How-
ever, such systems face a large number of constraints, such
as limited memory, energy, computation and communication
capabilities. The WBAN energy consumption can be divided
into three main processes: sensing, wireless communication
and data processing. The cost to wirelessly transmit data
is greater than for any other function [1], which suggests
that some data reduction strategy at the sensor node should
be employed. With this aim, Mamaghanian et al. [2] re-
cently proposed compressed sensing (CS) to lower energy
consumption and complexity in WBAN-enabled ECG moni-
tors. Their results show that CS outperforms state-of-the-art
wavelet transform-based ECG compression methods in terms
of energy efficiency.

Compressed sensing is a groundbreaking paradigm that
enables the reconstruction of sparse or compressible signals
from a small number of linear projections [3, 4]. Even though
the application of CS in WBAN-enabled ECG monitors is

still at its infancy, it has already led to important results. For
example, Chen et al. [5] demonstrated the ability of CS to
continually and blindly compress ECG signals at compres-
sion factors of 10X, without the need for any general purpose
memory or processing at the sensor node. Dixon et al. [6]
studied several design considerations for CS-based ECG tele-
monitoring via a WBAN, including the encoder architecture
and the design of the measurement matrix. Their results show
high compression ratios using a 1-bit Bernoulli measurement
matrix.

Our previous contribution to the area includes CS-based
algorithms for ECG compression with a focus on algorithms
enabling joint reconstruction of ECG cycles by exploiting
correlation between adjacent heartbeats [7, 8, 9]. In addition,
we also proposed a CS-based method to reconstruct ECG
signals in the presence of electromyographic (EMG) noise
using symmetric α-stable distributions to model the EMG
interference [10].

A latent problem when trying to reconstruct ECG sig-
nals using CS-based methods is the inability to accurately
recover the low-magnitude coefficients of the wavelet repre-
sentation [11]. To alleviate this problem, we propose to in-
corporate prior information about the magnitude decay of the
wavelet coefficients across subbands in the reconstruction al-
gorithm. More precisely, we derive a weighted !1 minimiza-
tion algorithm with a weighting scheme based on the standard
deviation of the wavelet coefficients at different scales. In
addition, the weighting scheme also takes into consideration
the fact that the approximation subband coefficients accumu-
late most of the signal energy. Experimental results on ECG
records from the MIT-BIH Arrhythmia database validate the
superior performance of the proposed algorithm in terms of
reconstruction quality and number of measurements.

2. BACKGROUND AND MOTIVATION

2.1. Compressed Sensing Review

Let x ∈ RN be a signal that is either K-sparse or compress-
ible in some orthogonal basis Ψ. Thus, the signal x can be
well approximated by a linear combination of a small set of
vectors from Ψ, i.e. x ≈

∑K
i=1

siψi, where K # N . Let Φ
be an M × N sensing matrix, M < N . Compressed sens-
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ing [3, 4] deals with the recovery of x from undersampled
linear measurements of the form y = Φx = ΦΨs. If we de-
fineΘ = ΦΨ, then the measurement vector becomes y = Θs.
Compressed sensing addresses the signal x can be recovered
from M = O(Klog(N/K)) measurements if the matrix Θ
satisfies the restricted isometry property (RIP) [4]. In practi-
cal scenarios with noise, the signal s can be recovered from y
by solving the convex optimization problem

min
s

1

2
‖y −Θs‖22 + λ‖s‖1, (1)

with λ a parameter that controls the trade-off between spar-
sity and reconstruction fidelity. Problem (1), known as basis
pursuit denoising (BPDN) [12], can be viewed as a maximum
a posteriori (MAP) estimate for s under the assumption that
each component of s is drawn i.i.d. from a Laplace prior [13].

2.2. Wavelet representation

Consider a signal x of length N . Given a scaling function ϕ
and a wavelet function ψ, the wavelet representation of x can
be expressed in terms of shifted versions of ϕ and shifted and
dilated versions of ψ

x =
N1−1
∑

i=0

a1,iϕ1,i +
L
∑

j=1

Nj−1
∑

i=0

dj,iψj,i, (2)

where j denotes the scale of analysis and L indicates the
finest scale. Nj = N/2L−j+1 corresponds to the number
of coefficients at scale j ∈ {1, . . . , L} and i represents the
position, 0 ≤ i ≤ Nj − 1. The wavelet transform con-
sists of the scaling coefficients a1,i and wavelet coefficients
dj,i. Using the previous notation, we write x = Ψs, where
s = [a1,1 . . . a1,N1−1d1,0 . . . d1,N1−1 . . . dL,0 . . . dL,NL−1]T

is the vector of scaling and wavelet coefficients and Ψ is the
orthogonal matrix containing the wavelet and scaling func-
tions as columns. The vector s can be decomposed into L+1
subvectors. The first subvector corresponds to the scaling co-
efficients and is denoted as a1. The next L subvectors are
denoted by dj , j = 1, . . . , L, and the jth subvector contains
all of the wavelet coefficients for scale j. Thus, s can also be
written as s = [a1d1d2 . . . dL]T .

2.3. Motivation

The optimization problem in (1) only considers the sparsity of
the ECG wavelet representation, and therefore, it does not ex-
ploit all of the rich structure present in the ECGwavelet repre-
sentation. Recent efforts on CS show that the incorporation of
prior knowledge into standard sparse recovery algorithms can
boost their performance [14, 15]. Along these lines, we aim
to find properties of the ECG wavelet representation that can
be incorporated into compressive sensing-based algorithms to
improve the reconstruction and reduce the number of neces-
sary measurements.
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Fig. 1. Reconstruction of ECG signals using BPDN (a) Orig-
inal signal. (b) Wavelet representation. (c) Relative error sig-
nal.

An experiment is performed to evaluate the recovery of
ECG signals when only the sparsity property is exploited in
the reconstruction. The selected signal, denoted as x and il-
lustrated in Fig. 1(a), corresponds to a sequence of the record
117 from the MIT Arrythmia database, formed by N = 2048
samples. Figure 1(b) refers to its corresponding wavelet rep-
resentation, using Daubechies-4 and a decomposition level
L = 5. The dotted lines indicate the separation between con-
secutive wavelet subbands. We note that the approximation
subband accumulates most of the signal energy. The spar-
sity level is selected as the number of coefficients that accu-
mulates 99.99% of the signal energy, which corresponds to
K = 210 for the selected sequence. The sequence is sensed
with a random CS matrix satisfying the RIP, and with a num-
ber of measurements M = 630. The reconstruction is per-
formed with the traditional BPDN algorithm presented in (1)
and the evaluation performance, in terms of the relative re-
construction error, is illustrated in Fig. 1(c). The relative
reconstruction error is defined as (x − x̂)/x, where x̂ is the
recovered signal. From Fig. 1(c), we note that the error in the
reconstruction of the detail subbands d4 and d5 has the high-
est magnitude, which is detrimental for medical diagnosis.

The unsatisfactory performance of BPDM in reconstruct-
ing ECG signals motivates the development of new CS-based
algorithms for ECG reconstruction. This paper aims at ad-
vancing CS ECG by exploiting two properties of the ECG
wavelet representation. More precisely, we exploit the fact
that the approximation subband coefficients accumulate most
of the signal energy and that the magnitude of the detail
wavelet coefficients decreases across scales.
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3. METHODS

3.1. Random sampling

A sliding window of size N is used to sample the ECG sig-
nal. Let x denote the ECG segment captured by the win-
dow. The information we gather about x can be described
by y = Φx, where Φ is a M × N matrix, or equivalently
as y = ΦΨs = Θs, where Ψ is the orthogonal wavelet ba-
sis and s is the wavelet representation. In order to recover
the bestK-term approximation of the original signal, the ma-
trix Φ needs to satisfy the RIP. It is known that sub-Gaussian
matrices satisfy this condition with overwhelming probabil-
ity [4]. Here we assume that the entries of the matrix Φ
are independently sampled from a symmetric Bernoulli dis-
tribution (P(Φi,j = ±1/

√
M = 1/2)) to facilitate an effi-

cient hardware implementation. The use of Bernoulli matri-
ces, as compared to other sub-Gaussian matrices, results in
simpler circuit complexity, data storage, and computation re-
quirements [5].

3.2. Reconstruction

This section aims to reconstruct the vector s from the mea-
surements y = Θs+ r, where r is the noise unavoidably cor-
rupting the data. A maximum a posteriori (MAP) approach
is proposed for the reconstruction of s. To favor a sparse es-
timate, a Laplacian distribution with standard deviation σi is
adopted for each entry si of s; that is

p(si) =
1√
2σi

exp

(

−
√
2‖si‖1
σi

)

. (3)

The noise r is modeled as independent and Gaussian with
zero mean and variance equal to σr. To infer s from y, we
maximize the conditional probability distribution p(s|y,Θ),
which can be expressed by means of Bayes’s rule as

p(s|y,Θ) ∝ p(y|Θ, s)p(s). (4)

Because the noise is assumed to be Gaussian, the likelihood
function is given by p(y|Θ, s) ∝ exp

(

−‖y −Θs‖22/(2σ2
r)
)

.
Therefore, maximizing the posterior distribution p(s|y,Θ)
leads to

sMAP = argmax
s

p(s|y,Θ) (5)

= argmax
s

(

log p(y|Θ, s) +
∑

i

log p(si)

)

(6)

= argmin
s

(

‖y −Θs‖22
2σ2

r
+
∑

i

√
2‖si‖1
σi

)

. (7)

The problem in (7) can also be expressed as

sMAP = argmin
s

(

1

2
‖y −Θs‖22 + λ‖Ws‖1

)

, (8)

whereW is a diagonal matrix, whose ith diagonal element is
of the form 1/σi, and λ is a tuning parameter. This problem
is equivalent to BPDN when all σi are equal.

The solution of problem (8) requires the standard devia-
tions for each coefficient of the wavelet representation, which
are unknown in our case. To cope with this issue, we propose
to model the variance variation across scales with exponen-
tial decay functions. As presented in Section 2.3, the detail
wavelet coefficients of ECG signals tend to decrease across
scales, and this behavior can be enforced by modeling the
variances so that they decay exponentially as the scale be-
comes finer. This idea corresponds to the model proposed by
Romberg et al. [16]:

σ2
j = C2−jα j = 1, . . . , L, (9)

where C and α are the model parameters and j is the scale
of analysis. In this model, the σi, i = 1, . . . , N values are
made equal for all coefficients within a scale, and therefore
σ2
j refers to the variance of the coefficients at scale j.
Define W " =

√
CW and λ" = λ/

√
C. Then, problem

(8) can be reformulated as the following !1 weighted mini-
mization

sMAP = argmin
s

(

1

2
‖y −Θs‖22 + λ"‖W "s‖1

)

, (10)

where λ" is regarded as a tuning parameter. By using eq. (9)
and the fact that each diagonal entry of W satisfies Wi,i =
1/σi, we infer that diagonal elements of W " corresponding
to scale j are of the form 2jα/2.

As presented in Section 2.3, the approximation subband
coefficients accumulate most of the signal energy and, there-
fore, should be included in the sparse representation of the
ECG. To exploit this property, we employ a similar approach
as that of Vaswani et al. [15] to reconstruct a sparse signal
when part of the support is known a priori, which consists of
finding the signal that satisfies the data fidelity constraint and
is the sparsest outside of the known support. In our approach,
this idea is implemented by setting to zero the diagonal en-
tries ofW " corresponding to the approximation subband, i.e..
W "

i,i = 0 for i = 1, . . . , N1.
As the diagonal entries ofW " only depend on the value of

α, problem (10) can be solved after α is calculated. This leads
us to propose a training stage to estimate the value of α. The
first part predicts the standard deviations σj , j = 1, . . . , L
using maximum likelihood estimation. Once the variances
are estimated, simple linear regression can be employed to
solve for α in the following equation, derived from (9),

log2σ2
j = log2C − jα, j = 1, . . . , L. (11)
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Fig. 2. Scatter plot of j versus log2σ2
j and fitted regression
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4. EXPERIMENTAL RESULTS

To validate the proposed method, the MIT Arrythmia
database [17] is employed for both training and testing. Every
file in the database consists of two lead recordings sampled at
360Hz with 11 bits per sample of resolution. The data set
proposed by Lu et al. [18] is used in our experiments. It con-
sists of records 100, 101, 102, 103, 107, 109, 111, 115, 117,
118 and 119, which encompasses a variety of signals with
different rhythms, QRS complex morphologies and ectopic
beats. We set the length of the sliding window to N = 2048,
a commonly used segment length value for ECG processing.
The orthogonal Daubechies-4 wavelets is set as the sparsify-
ing transform and the decomposition level is set to L = 5.

The reconstruction SNR (R-SNR) is used as the perfor-
mance measure for experiments,

R-SNR = 10log10
‖x‖22

‖x− x̂‖22
, (12)

where x and x̂ denote the N -dimensional original and recon-
structed signals, respectively.

The first experiment aims at finding the parameter α in
(11) through simple linear regression. The training data con-
sists of the wavelet representation of 330 ECG sequences of
length N = 2048 from the selected set of records; 30 se-
quences per record. Let cj denote the vector formed by the
concatenation of the wavelet subbands from the training data
at scale j. The standard deviations σj , j = 1, . . . , L, are
first calculated using the maximum likelihood estimate of the
standard deviation of a Laplacian distribution,

(σj)ML =

√
2‖cj‖1
Pj

j = 1, . . . , L, (13)

where Pj refers to the dimension of cj . Figure 2 shows the
scatter plot with scale j displayed on the horizontal axis and
log2 σ2

j on the vertical axis. The continuous line in Fig. 2,
with slope −α = −1.62, corresponds to the fitted regression
line.
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Fig. 3. Comparison of the proposed method with BPDN. Re-
construction SNR averaged over all the records of the selected
data set for different number of measurements.

The second experiment is performed to compare the pro-
posed method with the BPDN algorithm, which is the re-
construction algorithm selected by Mamaghanian et al. [2],
Dixon et al. [6], and Chen et al. [5] for the recovery of ECG
signals. As described in Section 3.1, the measurements are
obtained with a Bernoulli matrix. The experiment is car-
ried out and averaged over 10-min long single leads extracted
from the selected set of records. The reconstruction SNR
is used to evaluate the quality of the recovered signals as a
function of the number of measurements M . The measure-
ments are corrupted by additive white Gaussian noise with
σr = 0.05. Chen et al. [12] proposed to set the tuning pa-
rameter to the value λ = σr

√

2log(N). The same criteria
is adopted for the selection of the tuning parameters in our
experiments.

As shown in Fig. 3, the proposed algorithm outperforms
the traditional BPDN algorithm as it requires fewer measure-
ments while achieving superior reconstruction quality. These
results are expected as the proposed method exploits prior
knowledge of the signal structure, unlike BPDN, which only
leverages the sparsity of the signals.

5. CONCLUSION

This paper proposes an ECG signal reconstruction scheme
based on a weighted !1 minimization method. The proposed
weighting scheme allows the efficient use of information on
two important properties of the ECG wavelet representation:
energy concentration in the approximation subband and ex-
ponential magnitude decay of the detail coefficients across
scales. The proposed algorithm was evaluated for the re-
construction of a set of eleven ECG records from the MIT-
BIH Arrhythmia database encompassing a variety of signals
with different rhythms, QRS complex morphologies and ec-
topic beats. Results show significant performance gains are
attained over the traditional basis pursuit denoising algorithm.
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