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Abstract—Compressed Sensing (CS) is a new acquisition-

compression paradigm for low-complexity energy-aware sensing

and compression. By merging both sampling and compression,

CS is very promising to develop practical ultra-low power read-

out systems for wireless bio-signal monitoring devices, where

large amounts of sensor data need to be transferred through

power-hungry wireless links.

Lately CS has been successfully applied for real-time energy-

aware single-lead ECG compression on resource-constrained

Wireless Body Sensor Network (WBSN) motes [1]. Building on

our previous work, in this paper we propose a new and promising

approach for joint compression of multi-lead ECG signals, where

strong correlations exist between them. This situation that exhibit

strong correlations, can be exploited to reduce even further

amount of data to be transmitted wirelessly, thus addressing the

important challenge of ultra-low-power embedded monitoring of

multi-lead ECG signals.

I. INTRODUCTION

CS is a new sensing and processing paradigm, which
challenges the traditional analog-to-digital conversion based
on the Shannon sampling theorem. For sparse signals such as
the electrocardiogram (ECG), Nyquist-rate sampling produces
a large amount of redundant digital samples, which are costly
to wirelessly transmit in the context of our target mobile
ECG monitoring systems, and require to be further compressed
using non-linear digital techniques. CS is a methodology that
has been recently proposed to address this problem.

Capitalizing on this sparsity, we have recently proposed [1],
[2], to apply the emerging compressed sensing (CS) ap-
proach [3] for a low-complexity, real-time and energy-efficient
ECG signal compression on WBSN motes. We have also
quantified the potential of compressed sensing (CS) for low-
complexity energy-efficient ECG compression on the state-
of-the-art ShimmerTM WBSN mote. Interestingly, our results
show that CS represents a competitive alternative to state-of-
the-art digital wavelet transform (DWT)-based ECG compres-
sion solutions in the context of WBSN-based ECG monitoring
systems. The results validate the suitability of compressed
sensing for real-time energy-aware ECG compression on
resource-constrained WBSN motes.

Nonetheless, in a real scenario many of the bio-signals are
acquired on multiple channels. In these cases, sampling, com-
pressing and reconstructing each signal individually is clearly
sub-optimal, because leads are not independent sources, and
are in fact strongly correlated. In the case of the ECG acqui-
sitions, all signals can be considered as different projections
of a single multidimensional source, which is the electrical

field produced by the heart. Thus not only these leads are not
independent, but each lead conveys useful information about
other leads.

In this paper, the mutual information between the leads of
bio-signals can be exploited to optimize CS-based compres-
sion, considering the example of multi-lead ECG acquisitions.
We also propose techniques to exploit this information for
optimized recovery of the joint compressed sensing. This
optimization will directly translate to less measurement needed
for the recovery, leading to reduction in transmission band-
width (and, ultimately, of power consumption) without quality
degradation.

Notation: In all the following, normal letters designate
scalar quantities, boldface lower-case letters indicate column
vectors, and boldface capitals represent matrices. Moreover,
mi and Mi,j are the ith entry of vector m and the (i, j)th entry
of matrix M, respectively. Finally, (.)H and ||.||p denote the
conjugate transpose, and the `p-norm of a vector, respectively.

II. COMPRESSED SENSING AND SPARSE RECOVERY

Let x be the real-valued N -dimensional ECG signal vector
(x 2 RN ). The original ECG signal x has a sparse approxima-
tion, i.e., it can be represented by a linear superposition of S
elements of an orthonormal wavelet basis, x ⇡ PS

k=1 ↵k k,
with S ⌧ N . Conventionally, one would collect ECG samples
at the Nyquist rate forming x and then compress it using
non-linear digital compression techniques. CS offers a strik-
ing alternative by showing that you can collect roughly S
samples using simple analog measurement waveforms, thus
sensing/sampling and compressing at the same time (Analog
CS) [4]. But in present work CS is done after ADC (digital
CS), where digital samples vector x are available. Thus
compressed data vector y 2 RM is represented by y = �x,
where � 2 RM⇥N is called sensing matrix.

It is important to notice that the sensing matrix � does not
depend on the signal: CS proposes a simple linear sampling
strategy that is only marginally off the optimal but complex
best adaptive strategy. To guarantee the robust and efficient
recovery of the S-sparse signal ↵S , the sensing matrix �
must obey the key restricted isometry property (RIP) [5]:

(1� �S) ||↵||2  ||� ↵||2  (1 + �S) ||↵||2 , (1)

for all S-sparse vectors ↵. �S is the isometry constant of
matrix �, which must be not too close to one. In CS literature,
i.i.d sub-Gaussian matrices are popular, since they are known
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to be measurements optimal. The lower bound for the number
of measurements is proven to be M = ⌦

�
S logN

�
. But as

far as sparsity S considered, Gaussian matrices are not space
optimal and need a huge storage space and nor time optimal
since complexity of the encoding and reconstruction is in order
of O�

MN
�
, which makes them far from being practical and

real-time for a limited resource WBSNs. As an alternative,
here sparse binary matrix is used as our sensing matrix �,
where each column contain only d nonzero elements equal
to 1, (d ⌧ M ⌧ N) [1] with required space and time
complexity of O�

dN
�
. For such a sensing matrix, the RIP

property of 1 is not valid. However, it satisfies a different form
of this property, with slightly more required measurements [6]
which guarantees the reconstruction.

If RIP holds, then an approximate sparse signal reconstruc-
tion can be accomplished by solving the following convex
optimization problem:

min

↵̃2RN

||˜↵||1 subject to ||� ˜↵� y||2  �, (2)

where � bounds the amount of noise corrupting the data.
This is a convex optimization problem that can be solved with
a variety of techniques. Later in Section III we discuss one
particular algorithm that does so.

III. MULTI LEAD ECG AND JOINT COMPRESSION

The CS sampling and reconstruction steps has been de-
scribed in previous Section II. In this section we will discuss
the problem of the multileads ECG signals and their joint com-
pression. Let X 2 RN⇥L be the real valued matrix of ECG
signals where each column corresponds to a single ECG leads.
Now the CS problem could be written as Y = �X, where� is
the sensing matrix. Let’s imagine that X =  A is the matrix
of the wavelet representation of the original ECG matrix:
A 2 RN⇥L

= [↵1,↵2, . . . ,↵L], and ↵i, i 2 {1, 2, . . . , L},
is the vector of wavelet coefficients of each ECG lead. We
could rewrite the problem (2) in the form:

min

↵2RN

f(↵) + �g(↵) (3)

where f : RN ! R is a convex differentiable function and
g : RN ! R is a sparsity-inducing norm. Here, our data-fitting
function is f(↵) = ||� ˜↵� y||2 and usually in context of
the CS reconstruction `1 norm is used to enforce sparsity.
In case of the multi-lead ECG compression, where there is
a strong correlation between the sparsity structure among the
leads, and the sparse coefficients model should be refine to take
it into account. In such a situation, where nonzero coefficients
are naturally partitioned in subsets or groups, the best choice
could be using a group-sparsity inducing term [7]. Figure 1,
shows the support of the best S-term approximation of the
investigated multi-lead ECG recordings. It shows that support
set of the S-term approximation for leads are very similar,
so that a joint sparse support selection can be performed in
the reconstruction algorithm. We propose to achieve this by
replacing the traditional `1 norm with the following `1/`2
group prior: g(↵) =

P
g2G ||↵g||2. where G is a partition
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Fig. 1: Support of the best S-term approximation of multi-lead
ECG signals.

of {1, ..., p}, and ↵g denotes the vector in R|g| recording
the coefficient of ↵ indexed by g in G. This is known as
a mixed `1/`2-norm. It behaves like an `1-norm on the vector
(||↵g||2)g2G in R|G|, and therefore, g induces group sparsity.

The CS problem (3) can be cast as a second order cone pro-
gramming problem and thus could be solved via interior point
methods [8]. However, it involves dense matrices, which often
precludes the use and potential advantage of sophisticated
interior point methods. Here, we use the class of proximal
methods, which involves very cheap computational effort com-
pared to interior point methods. This class of methods could be
applied to solve a problem of the form (3), where the problem
is as the sum of a generic smooth differentiable function f
with Lipschitz-continuous gradient, and a non-differentiable
function �g(.). Here we use the Fast Iterative soft thresholding
algorithm (FISTA) for the `1-norm method [9].

IV. RESULTS

To validate the performance of the proposed joint compres-
sion scheme, we use the PTB Diagnostic ECG Database [10],
available on the physionet website. The database contains
549 records of 15-lead ECG from 290 subjects. Signals are
sampled at 1 KHz with 16-bit resolution.

Moreover, to quantify the compression performance while
assessing the diagnostic quality of the compressed ECG
records, we employ the two most widely used performance
metrics, namely the compression ratio (CR) and percent-
age root-mean-square difference (PRD). CR is defined as:
CR =

b
orig

�b
comp

b
orig

⇥ 100, where borig and bcomp represent
the number of bits required for the original and compressed
signals, respectively. The PRD, and associated signal-to-noise
ratio (SNR), quantifies the percent error between the original
signal vector x and the reconstructed ˜

x:

PRD =

||x� ˜

x||2
||x||2

⇥ 100, (4)

SNR = �20 log10 (0.01PRD) . (5)
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Fig. 2: Output averaged PRD (left) and SNR (right) over all
records for different compression ratios

The link between the measured PRD and the diagnostic
distortion is established based on the work of Zigel et al.
on the weighted diagnostic measure for ECG signal compres-
sion [11], which classifies the different values of PRD based
on the signal quality perceived by a specialist. Accordingly, the
reconstruction with PRD value between 0 ⇠ 2% and 2 ⇠ 9%

categorized as ”very good” and ”good” quality. For higher
PRD values it is not possible to determine the quality group.

Here, in this section we present the results for both Normal
CS reconstruction with `1 regularization per channel and joint
group reconstruction with `1/`2-norm. In all our experiments
ECG matrix X is a window of size N = 512 and L = 15. For
sensing matrix �, sparse random binary matrix is used, where
each column contain only d nonzero elements (d = 35) [12].
The results are averaged over 100 packets randomly selected
from all the database records.

Figure 2 compares the output SNR and PRD, averaged
over all database records, for both algorithms and different
compression ratios. The ”Normal reconstruction” and ”Joint
reconstruction” correspond to convex minimization with `1
and `1/`2 constrains respectively. This figure shows the av-
erage PRD and SNR, but there is a large variance across
individual records. Alternatively, Figure 3 shows the box plots
for both algorithms. On each box, the central mark is the
median, the edges of the box are the 25

th and 75

th percentiles,
and the whiskers extend to the most extreme. In both figures
the level corresponding to the ”good” (corresponding to PRD
level between 2% and 9%) and ”very good” (PRD level below
than 2% reconstruction qualities are indicated. It shows that
the joint reconstruction clearly outperforms the normal CS
reconstruction for all compression ratios: ”good” reconstruc-
tion quality for Normal CS can be reached with 65.9% of
compression, while for joint reconstruction this number could
increase close to 7% to reach up to 72.7%. As noted in our
previous work [1], compression can be further enhanced by
removing inter-packet redundancy and performing Huffman
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Fig. 3: Box plots for all database records for Normal recon-
struction (top) and Joint reconstruction (bottom)

coding. The results of our work shows that compression level
could be enhanced by close to 50% by removing the inter-
packet redundancy and Huffman coding without scarifying the
reconstruction quality.

Figures 4a and 4b compare the averaged SNR for each lead
for different compressions. The output SNR are color coded.
These figures also show that joint reconstruction enhances the
quality of all leads at the same time. The weak behavior for
leads number 4 and 7, compared to other leads are due to
the fact that these leads are very noisy compared the rest of
the leads. This is also shown on the Normal reconstruction in
Figure 4a.

V. ENERGY CONSUMPTION ANALYSIS

In this section, we further investigate the power consump-
tion of the both algorithms. Our experimental setup consists of
a Shimmer wireless node[13] implementing embedded ECG
compression by CS and wirelessly transmitting the compressed
data using its IEEE 802.15.4-compliant radio to a remote
base station. A simple medium access control (MAC) scheme
is implemented between the node and the base station in
FreeRTOS: the base station periodically sends a beacon to
maintain node synchronization, and the ECG sensing node
sends its data in its guaranteed time slots (GTS) which is
assigned by the base station and notified in the beacon. This
simple MAC is in fact compatible with the beacon-enabled
mode of the IEEE 802.15.4 MAC protocol [14].

To study the power consumption of the different working
modes of the node was characterized. Our measurements show
an average node power consumption of 84.6mW during radio
reception, and of 64.35mW during transmission. The radio
is only turned on for beacon reception (i.e., 2.7ms), and
when there is a data packet to be transmitted. Moreover, each
transmitted packet is 127-Byte long with 13 Byte of MAC
overhead (4.2ms). The rest of time, the radio is off and the
processor is idle and only wakes up for sampling to preserve
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Fig. 4: Averaged SNR for all the leads for different com-
pression levels for normal CS (top) and joint reconstruction
(bottom)

energy, which corresponds to an average power consumption
of 6.44mW . Figure 5, shows the breakdown of the total energy
consumption for both algorithms corresponding to ”good”
reconstruction quality, between the three main processes: 1)
the wireless communication; 2) the code execution on the
CPU; and 3) the sampling and the operation system (OS).
As shown in Figure 5, most of the energy is due to the
radio link which strongly recommends the need for a suitable
compression technique. Total energy consumption for the
normal CS and Joint compression are 41.3µJ , and 32.7µJ
respectively. Our results shows that Joint reconstruction could
reach up to 22% reduction in overall energy consumption of
the node. This will increase overall lifetime of the node by
26% from 25 hours to 31.7 hours on a 280mAh@3.7V battery.

VI. CONCLUSION

This paper presents a novel algorithm for compression of
the multi-lead ECG signals. Exploiting the strong correlation
between different leads, we could enhance the overall com-
pression rate by 7% compared to Normal CS reconstruction,
where no additional coding is done except CS. Our experi-
ments on a test setup based on Shimmer wireless nodes show
that this could reduce the overall power consumption of the
node by 22% and overall lifetime of the node by 26%. As such,
our results validate the suitability of joint compressed sensing
for real-time energy-aware multi-lead ECG compression.
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Fig. 5: Breakdown of energy consumption of Shimmer
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