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ABSTRACT

The deployment of small cells, overlaid on existing cellular infras-

tructure, is seen as a key feature in next-generation cellular systems.

In this paper, the problem of user association in the downlink of

small cell networks (SCNs) is considered. The problem is formu-

lated as a many-to-one matching game in which the users and SCBSs

rank one another based on utility functions that account for both the

achievable performance, in terms of rate and fairness to cell edge

users, as captured by newly proposed priorities. To solve this game,

a novel distributed algorithm that can reach a stable matching is pro-

posed. Simulation results show that the proposed approach yields an

average utility gain of up to 65% compared to a common association

algorithm that is based on received signal strength. Compared to the

classical deferred acceptance algorithm, the results also show a 40%
utility gain and a more fair utility distribution among the users.

Index Terms— Small cell networks; Matching theory; Cell as-

sociation.

1. INTRODUCTION

Smartphones have significantly increased the traffic load in current

cellular networks and this trend is expected to continue in the next

few years [1]. Meeting the demand generated by this increasing traf-

fic requires significant changes to current cellular architecture. One

promising approach to address this problem is via the concept of

small cell networks (SCNs) [2, 3]. SCNs allow to improve the ca-

pacity and coverage of wireless networks by reducing the distance

between users and their serving base stations. This is done by de-

ploying small cell base stations (SCBSs), overlaid on current macro-

cell networks and connecting to existing backhauls such as DSL [4].

The deployment of small cells introduces numerous challenges

in terms of interference management, resource allocation, and net-

work modeling [1–12]. In particular, cell association is an impor-

tant challenge in SCNs. For instance, directly deploying classical

macrocell-oriented cell association schemes in SCNs can lead to in-

efficient association due to the factors such as heterogeneous capa-

bilities and varying coverage areas [5]. In [6,7], the authors proposed

several biased cell association approaches, in which the SCBSs’ cov-

erage areas are increased, to improve the network’s overall rate by

associating more user equipments (UEs) to SCBSs. Nevertheless,

one practical limitation of biasing is the use of overhead channels

shared by all SCBSs. Thus, different interference cancelation and

power control algorithms have been proposed in [8–11] to address

this problem. A new dynamic cell association approach to maximize

sum rate is introduced in [12] allowing UEs to adopt a heuristic cell

range expansion algorithm for load balancing. However, depending

on the bias value, this method may cause certain UEs to suffer from

signal-to-interference plus-noise ratio (SINR) degradation.
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Although these works provide interesting insights on cell as-

sociation, they are not user-centric and are mostly based on signal

strength or SINR. Indeed, most of these existing works require

network-level coordination which increases both complexity and

overhead and is undesirable in SCNs which are expected to be self-

organizing. One prospective approach to providing self-organizing

cell association in SCNs is via the powerful tools of matching the-

ory [13]. While matching theory has recently attracted a lot of

attention in wireless networks, such as for associating channels in

ad hoc and cognitive networks [14, 15], most of these works only

focus on the maximization of SINR-based utilities and do not handle

SCN-specific challenges. Moreover, these approaches do not offer

satisfactory solution for non-uniform user distributions and are often

unfair to cell-edge users.

The main contribution of this paper is to develop a novel ap-

proach for cell association in which users are smartly prioritized

based on their location and proximity to the small cells. The prob-

lem is formulated as a matching game in which users and base

stations (BSs) rank one another using preferences based on well-

defined utility functions. The proposed utilities at each BS capture

not only the rates it can offer to users, but also the preference of each

user to be associated to other BSs. These utilities also incorporate

a new prioritization technique that allows cell-edge UEs to more

actively participate in cell association. For solving the game, we

propose a novel algorithm based on the deferred acceptance (DA)

mechanism. Using this algorithm, we show that the user-cell as-

sociation problem can reach a stable matching. Simulation results

show that the proposed approach gives a considerable gain over

both conventional DA [14] and received signal strength indicator

(RSSI) approaches [4]. The results also show that the proposed

priority-based deferred acceptance algorithm improves the utility

distribution among users and increases the average utility of the

network.

The rest of the paper is organized as follows. Section 2 describes

the system model. Section 3 defines the problem as the matching

game and presents the proposed algorithm. Simulation results are

analyzed in Section 4 and conclusions are drawn in Section 5.

2. SYSTEM MODEL
Consider the downlink of an OFDMA SCN having a single macro-

cell overlaid with L − 1 SCBSs randomly distributed in the cover-

age area of the macrocell base station (MBS). We consider an open

access scheme in which all UEs are allowed to connect to their pre-

ferred tier. We assume that all tiers use the same spectrum, i.e. co-

channel deployment [16]. The total bandwidth B is divided into N

subcarriers in the set N and there are a total of M active users with

M being the set of all users. Hereafter, we use the term “BS” to

denote either an MBS or an SCBSs in L. The Shannon’s achievable

capacity of UE m from BS l over subcarrier j is:

Φljm(γljm) = wlj log(1 + γljm), (1)
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where wlj and γljm denote the bandwidth of subcarrier j and the

SINR, respectively.

One important challenge in such an SCN is the problem of as-

sociating the UEs to their serving BS. In a conventional setting,

each active UE is served by the BS which offers the highest RSSI.

From the network’s perspective, the cell association is often de-

fined as an optimization problem in which UEs are assigned to BSs

(µ : M → L) such that the overall sum utility of the network is

maximized:

argmax
µ

∑

l∈L

∑

m∈Ml

∑

j∈N

Φljm(γljm), (2)

s.t., ∀m :
∑

j∈N

Φljm(γljm) > Φth,m, (3)

where Ml denotes a set of all users associated to BS l. Φth,m rep-

resents the capacity threshold determined by the quality of service

(QoS) requirements of UE m. The problem given by (2) is known to

be NP-hard and complex to solve, due to non-linear and combinato-

rial nature of the assignment problem [17].

In SCNs, it is desirable to develop a self-organizing cell associa-

tion solution due to the network scale, the unplanned deployment of

SCBSs, and the limited SCBS coordination due to the finite-capacity

backhaul [4]. Hence, new approaches for cell association are needed.

One promising approach is via matching theory, as discussed next.

3. CELL ASSOCIATION AS A MATCHING GAME

A matching game is defined by two sets of players that evaluate one

another using well-defined preference relations [13]. We formulate

the proposed cell association problem in SCNs as a many-to-one

matching game in which a set of users M will be assigned to a set

of BSs L, where each UE will be assigned to at most one BS. We

assume that an arbitrary BS l can serve a maximum number of UEs

(quota) ql in the downlink. Depending on the channel quality or

equivalently SINR values, each UE builds a preference relation �m

over subsets of BSs and being unmatched ∅. In fact, via the trans-

mission of initial ranging signals, each UE m is able to form a L×N

channel matrix Hm in which each element hljm is the channel gain

of the subcarrier j used for the link between BS l and user m. We

will show that we can use these preference relations to obtain perfor-

mance gain over conventional cell association approaches. Further,

each BS has a preference �l over the subset of UEs based on a pre-

defined utility function. Iteratively, the UEs propose to their most

preferred BS according to their preferences and BSs accept or re-

ject proposals based on utilities they assign to their applicants. With

this in mind, a matching µ between SCBSs and users is defined as

follows:

Definition 1 A matching is defined as a function from the set M∪L
into the set of M ∪ L such that: 1) |µ(m)| = 1 for each user and

µ(m) ∈ L ∪ ∅, 2) |µ(l)| ≤ ql for BS l. Also, µ(l) ⊆ M∪ ∅, and 3)

m ∈ µ(l) if and only if µ(m) = l.

Therefore, the tuple (L,M,�L,�M,Q) , determines the cell asso-

ciation matching problem with �L= {�l}l∈L being the preference

set of the BSs, �M= {�m}
m∈M being the preference set of the

users, and Q = {ql| ∀l ∈ L} being the BSs’ quota vector.

3.1. Priority-based Preferences

To fully describe the matching µ, next, we define the preferences by

each side of the game.

3.1.1. Users’ Preferences

From the users’ side, each UE seeks to maximize its own, individual

utility function. Therefore, from the UEs’ point of view, we use rates

as the utility functions. Thus, using the estimated channel coefficient

� � � � � � � � � � � � � � �����
���

� 	 
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Fig. 1. Utility function at BS side versus SINR and for different

priorities. Here, ζ1 = 0.1 and ζ2 = 3 and αm ∈ {100, 30, 1}.

matrix Hm, user m shapes its L×N achievable data rate matrix, i.e.

Φm, whose elements are defined by (1), where

γljm =
pljhljm

∑L

k=1,k 6=l
pkjhkjm + σ2

. (4)

(4) represents the potential achievable SINR for UE m from BS l

at subcarrier j. plj and σ2 denote the transmit power of BS l over

subcarrier j and the variance of the receiver’s Gaussian noise, re-

spectively. In order to rank BSs, each user m takes the average of

the achievable data rates from each BS over all N subcarriers. From

(1) and (4), the 1× L utility vector of user m, Rm, is given by:

Rlm(γljm)=
1

N

N
∑

j=1

Φljm(γljm)=
1

N

N
∑

j=1

wlj log(1 + γljm) , (5)

where Rlm denotes the l-th element of Rm, that is the average

achievable rate for user m from BS l over N subcarriers. A BS l

is said to be acceptable for user m, i.e. BS l �m ∅ if and only if

Rlm > Φth. In addition, BS t �m BS s, if and only if Rtm > Rsm.

Thus, the preference matrix of users, MM×L, can be obtained

whose m-th row, χm = M(m, :), is the preference vector of the

user m. This vector is a subset of L that is sorted in descending

order based on the utility vector Rm.

3.1.2. Preferences of the MBS and SCBSs

The proposed matching game can be fully represented once the pref-

erence of each BS over users is defined. Here, we define a novel

scheme at the BS side of the game, which gives priority to UEs based

on the information gathered by each BS on the UEs’ preferences.

Most of the matching approaches in the literature focus on the util-

ities that only depend on SINR information [14, 15]. We show that

utilizing the information concealed in the UEs’ preferences offers

considerable gains in rates and other metrics of the network. There-

fore, unlike prior works, we propose novel utilities that depend on

such information. Suppose that users send their preference vector

to each BS they wish to associate with. Hence, each BS can form a

chance vector for its UE applicants, C1×M , whose elements are cho-

sen from {0, 1}. Then, the BS assigns priorities to its UE applicants

based on this vector. Depending on the type of priority given to a UE

applicant, BS will promote the utility of that particular UE. If UE ap-

plicant m has another option to apply to according to its preference

vector, the BS sets C(m) = 1, otherwise C(m) = 0. Consequently,

chance vectors are different at each BS and get updated for each

set of new applicants. Thus, instead of ranking users by only rate

maximization criterion, each BS takes the chance of each user into

account.

Next, we describe the matching approach at the BSs side while

clarifying the user assignment procedure. Using (5), the utility func-

tion of each BS is defined as follows:
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Fig. 2. An example of cell association with PDA. The black dotted

lines show the matching among randomly distributed UEs and BSs.

Ulm(αm, ε, γljm) = εRlm(γljm) + (1− ε)Ψlm(αm, γljm), (6)

where Ulm denotes the utility of user m given by BS l which is a

function of priority coefficients αm, resemblance factor ε ∈ {0, 1},

and γljm. Hence, UEm �l UEm′ if and only if Ulm > Ulm′ .

Clearly, UE m will be rejected if its utility Ulm is not one of the ql
highest utilities. If two users are identified with the same priority by

the BS they apply to, then ε = 1. Otherwise, the BS assigns ε = 0
to the utility of those two users. Function Ψlm(αm, γljm) in (6) is

given by:

Ψlm(αm, γljm) = Plm(αm, γljm) +Rlm(γljm) (7)

=
1

N

N
∑

j=1

wlj

(

αmζ1

log (ζ2 + αmγljm)
+ log (1 + γljm)

)

.

The promotion function Plm(αm, γljm) represents the amount of

promotion given to each class of users. That is, a BS increases the

value of each user’s achievable rate, based on the user’s priority αm.

The higher the priority that a certain user has, the more promotion

it will receive from the BS. Basically, we let αm ∈ {αa, αb, αc}
indicate the first, second and third priority coefficients, respectively.

The constant parameters ζ1 and ζ2 are used to control the shape of

Ψ(αm, γljm). Fig. 1 illustrates how each type of priority impacts

the utility function Ulm. The parameter ε is used to avoid priori-

tizing two users that have the same priority, since the promotion is

a function of SINR. Clearly, the proposed priorities allow to "pro-

mote" users that are experiencing a relatively low SINR, thus allow-

ing them to have a better BS association. Following describes the

prioritizing procedure.

Once the UE proposals are sent to an arbitrary BS l, applicants

of that BS can be divided into three groups of priorities as follows:

1st Priority: This includes UEs who have BS l as both their first and

their only remaining preference. Therefore, these applicants have

been accepted by BS l in the first iteration of proposals. That is, all

m who C(m) = 0 and χm(1) = l.

2nd Priority: This includes users for whom BS l is not the first

preference but it is the only remaining BS in the preference list. In

other words, C(m) = 0 and χm(1) 6= l.

3rd Priority: This includes the users that, if and when rejected by

BS l, they still have other choices in their preference list, i.e., ∃ l′ ∈
L \ l : Rl > Rl′ > Φth, or equivalently C(m) = 1.

These priorities are defined such that no UE can belong to two

different priority groups. We will show that this scheme will increase

the overall utility and the average rate of the SCBSs with worst-case

rates, by having more users involved in the association process.

> ? @ ? A ? B ? C ? D ? E ? F ? F D? G B? G D? G F>> G @> G B> G D> G F@
H IJKLMJNOPQPO RSJKTU

V W X Y Z [ \ ] W ^ Z [ ^
_ `a _ `b c c d

Fig. 3. Average utility per UE for PDA, RSSI and DA algorithms.
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Fig. 4. SINR-based average rates of the worst-case SCBS.

3.2. Proposed Priority-based Deferred Acceptance Algorithm

In Table 1, we show the various stages of the proposed priority-

based deferred acceptance (PDA) algorithm which incorporates the

prioritizing procedure in Subsection 3.1. For practical implementa-

tion, the preference matrix M can be obtained from Reference Sig-

nal Received Power (RSRP) signaling [4]. In addition, since users

send their preferences to BSs, no knowledge of SCBS distribution

is required. Hence, the priority-based approach is feasible for self-

organizing SCN implementation.

Definition 2 A matching µ is stable, if and only if no pair of
{

(m, l)|m ∈ M, l ∈ L
}

blocks the matching. That is,

@(m, l) s.t. m �l µ(l) and l �m µ(m). (8)

For the proposed algorithm in Table 1, we can state the following:

Lemma 1 The proposed PDA algorithm shown in Table 1 is guar-

anteed to converge to a stable matching.

This is a direct result of the fact that the proposed algorithm is based

on DA, which is shown to always converge to a stable matching [13].

Fig. 2 shows an example of a small-scale SCN with M = 6
and L = 3. Here, the user preference matrix is derived as

M6×3=





1 1 1 1 1 1
0 3 2 2 2 2
0 2 3 0 0 0





T

, where the m − th row indi-

cates the preference list of the user m, χm, and (.)T is the transpose

operation. The DA, RSSI and PDA approaches will lead to the
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Fig. 5. The histogram of the utility distribution for different algo-

rithms. Number of users is assumed M = 60.

Table 1. Proposed priority-based deferred acceptance
Inputs: L,M,Q, H

Initialize: Calculate the preference matrix M using (5). Initialize temporary

rejected vector of users, R.

while R is nonempty
repeat

step 1: User m ∈ R sends its preference vector χm to the next BS that is
going to apply.

step 2: BS l ∈ L updates its applicant list, assigns priorities to users as dis-
cussed in 3.1.2 and calculates the utilities from (6-7). BS l ranks the applicants by
their utility and selects first Q(l) users and rejects the rest.

step 3: Acceptance matrix A and the rejection vector R get updated. For
∀m ∈ R:

If C(m)=0,
Exclude m from R and add to unmatched set of users U .

Output: Stable matching µ

following matchings: µDA=

(

1 3 2
5 4 0

)T

, µRSSI=

(

1 3 0
2 4 0

)T

,

µPDA =

(

1 4 3
5 6 2

)T

. Owing to the proposed utilities, PDA is able

to cover all UEs in the match which leads to a higher performance

specifically for cell edge users which in this example are UEs 5 and

6.
4. SIMULATION RESULTS

For simulations, we compare the performance of the proposed

matching approach with the RSSI algorithm and the conventional

DA proposed in [14]. We consider a total of 10 SCBSs distributed

randomly within a square area of 1 km × 1 km with the MBS at

the center. The quota per BS is set to a typical value of 4 UEs [4].

The channels experience Rayleigh fading, with the propagation loss

set to αloss = 3. The transmit power of the MBS and the SCBSs

are assumed to be 10 W and 1 W, respectively. We assume the

noise level to be negligible compared to the interference level. The

parameters of the promotion function are set to ζ1 = 0.1 and ζ2 = 3
and the priority coefficient is set to αm ∈ {100, 30, 1}. Throughout

the simulations, the unmatched users are assigned a zero utility. All

statistical results are averaged over a large number of independent

runs for different locations and channel gains.

In Fig. 3, we show the average utility per UE resulting from the

proposed PDA algorithm and we compare it to both RSSI and DA, as

the number of UEs varies. Fig. 3 shows that, as the number of UEs

increases, the average utility of all three schemes decreases due to

the quota limitations of each BS. Indeed, the number of unmatched

users increases as the total number of users grows. In Fig. 3, we

can see that, at all network sizes, the proposed PDA has a signifi-

cant advantage in terms of the average utility per UE, reaching up

to 65% relative to the RSSI scheme (at M = 80 UEs). However,

in Fig. 3, we can see that the average utility of DA is comparable to

> ? @ ? A ? B ? C ? D ? E ? F ? F D>@ABC
DEF�> ?> >

� N�� JKfePO JKLOP f�h
V W X Y Z [ \ ] W ^ Z [ ^

� � E� � > >
Fig. 6. Average number of iterations versus the number of users.

PDA. That is due to the fact that the priorities defined in the PDA

provides a fairer allocation between users. In particular, the PDA

will allow significant improvements in the worst-case utilities and

rates achieved by worst-case SCBSs, as shown in Fig. 4.

Fig. 4 shows the SINR-based rates of three approaches for the

average rate of worst-case small cell. In Fig. 4, we can see that

as M increases, the average worst-case rates increases. This is a

result of the fact that there are more UEs in the proximity of each

BS as M increases. This increases the probability of filling up the

quotas of the SCBSs with UEs having higher quality links. In this

figure, we can clearly see that, at all network sizes, the proposed

PDA has a considerable gain compared to DA reaching about 40% of

improvement (at M = 70 UEs) in the worst-case rate. In addition,

Fig. 4 shows that the proposed PDA has a comparable worst-case

SCBS rate, when compared to the RSSI.

In Fig. 5, we evaluate the performance of the proposed PDA via

the utility distribution among UEs for M = 60 UEs. Fig. 5 shows

that the proposed PDA has significantly more users achieving higher

utilities, when compared to both RSSI and DA. For example, for

M = 60, only 32% of users are assigned to the lowest 10% of utili-

ties, while this value for DA and RSSI is 45% and 47%, respectively.

This is mainly due to the the fact that the proposed PDA is able to

reduce significantly the number of unmatched users.

Fig. 6 shows the average number of iterations resulting from the

proposed PDA as the number of users M varies, assuming L = 7
and L = 11 BSs. In this figure, we can see that, as the number of

UEs and SCBSs increase, the average number of iterations increases

due to the increase in the number of players. Nonetheless, Fig. 6

demonstrates that the proposed matching approach has a reasonable

convergence time that does not exceed an average of 10 iterations

for a network with M = 86 users and 10 SCBSs.

5. CONCLUSIONS

In this paper, we have proposed a novel approach for cell association

in SCNs. We have formulated the problem as a many-to-one match-

ing game in which users and base stations evaluate each other based

on well defined utilities. In the proposed utilities, we have intro-

duced a new notion of priorities that allows the base stations to use

the information concealed in the preferences of each user in conjunc-

tion with conventional rate maximization. We have shown that being

aware of each user’s overall preferences provides a beneficial insight

to the base stations thus allowing an enhanced user association in

the downlink of SCNs. To solve the game, we have proposed a self-

organizing algorithm that is guaranteed to reach a stable matching.

Simulation results have shown that the proposed approach yields a

significant performance improvement in terms of the average utility

per user and the average rate experienced by worst-case cells.
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