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ABSTRACT

This paper presents a simple method to indirectly estimate
the range of certain important electrocardiogram (ECG) pa-
rameters using photoplethysmography (PPG). The proposed
method, termed as PhotoECG, extracts a set of time and fre-
quency domain features from fingertip PPG signal. A feature
selection algorithm utilizing the concept of Maximal Informa-
tion Coefficient (MIC) is presented to rank the PPG features
according to their relevance to create training models for dif-
ferent ECG parameters. The proposed method yields above
90% accuracy in estimating ECG parameters on a benchmark
hospital dataset having clean PPG signal. The same method
results an average of 80% accuracy on noisy PPG signal cap-
tured by iPhone, indicating its feasibility to create phone ap-
plications for preventive ECG monitoring at home.

Index Terms— photoplethysmography, electrocardio-
gram, feature selection, classification

1. INTRODUCTION

Electrocardiogram (ECG) is a popular medical diagnosis to
check the heart condition of a person. It is widely recom-
mended as a preliminary test to be carried out by patients,
feeling any kind of chest problem. An alarming study of
World Health Organization (WHO) [1] reveals that more than
23 million people will succumb annually from cardiovascular
diseases by 2030. Due to urban lifestyle and stresses at work
place, daily health tips are often neglected. As a result, young
people, even aged under 35 are now prone to sudden cardiac
arrests [2]. Thus, simple, low cost and portable solutions to
regularly monitor vital physiological parameters like heart-
rate, blood pressure and ECG at home are drawing attention
as part of preventive healthcare.
Photoplethysmography (PPG) is a simple and inexpensive
way to measure the instantaneous change of blood volume
in blood vessels [3]. Cheap commercial devices are avail-
able to capture PPG signal from human peripheral body parts
like fingertip for measuring heart rate. Moreover, in today’s
ubiquitous world, there are applications that capture reflective
PPG signal using a mobile phone having high quality camera
with flash. Grimaldi et al. [4] and Gregoski et al. [5] pro-

posed such techniques using android smart phones. Pal et al.
developed an iPhone application [6], that captures reflective
PPG signal and removes the noisy part out of it, using RGB
analysis for robust heart rate measurement.
A complete ECG cycle contains five major points (P, Q, R, S
and T) and few time interval parameters (PR, QRS, QT) for
checking heart condition. A prolonged PR interval indicates
a possibility of first stage heart block [7]. A prolonged QT
interval, caused due to effects of certain drugs is a risk factor
of ventricular tachyarrhythmias [7]. RR interval indicates
the heart rate. Thus, rather than measuring accurate values,
an estimation of the range of PR, QRS or QT interval can
indicate the heart condition of a person for initial screening
purpose and alert generation at home.
Both ECG and PPG are directly synchronized with human
cardiac cycle. The peak to peak interval of PPG is known to
be highly correlated with the RR interval [3], indicating the
possibility of deriving other ECG parameters from PPG. In
this paper we propose an approach to predict the range of PR,
QRS and QT intervals along with actual value of RR inter-
val parameter of a person from PPG. Although the method
does not claim to compete with the accurate ECG machines,
it introduces a simple initial screening system (possibly a
phone application) for household ECG monitoring. The main
contribution of the paper are:
• Machine learning based approach to estimate the range

of ECG parameters using PPG features.
• A novel feature selection approach using sigmoid gain

function based on Maximal Information Coefficient
(MIC), resulting in better accuracy.
• Removal of outlier feature data for improving the per-

formance on noisy PPG data.
Our experimental dataset is explained in Section 2. The de-
tails of our methodology and results are given in Section 3
and 4 respectively, followed by conclusion.

2. EXPERIMENTAL DATASET

We have used two datasets for experimental purpose. Cap-
nobase TBME-RR [8] [9] is a benchmark hospital dataset
containing simultaneously recorded PPG and ECG data for
42 patients each with 8 minutes duration, sampled at 300 Hz.
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Table 1. Range of ECG Parameters for Classification.
Low Normal High

PR < 120 ms 120− 200 ms > 200 ms
QRS < 60 ms 60− 100 ms > 100 ms
QT < 350 ms 350− 470 ms > 470 ms

It covers all the ranges of PR, QRS and QT interval parame-
ters as shown in Table 1, along with a wide variation of heart
rate and hence is an ideal dataset for testing the performance
of our proposed method.
We collected a second dataset for further performance anal-
ysis. Twenty five subjects, including male and female sub-
jects, aged between 22-40 in uniform distribution participated
in this process. The method proposed by Pal et al. [6] was im-
plemented in an iPhone 4 for capturing reflective PPG at 30
Hz sample rate. ECG of an individual was simultaneously
recorded using Etcomm Bluetooth ECG [10] device. This
dataset also covers all the ranges of ECG parameters, but is
noisier than Capnobase. The performance of our method is
evaluated on this dataset to test its viability to create phone
applications for ECG parameter estimation.

3. METHODOLOGY

Our methodology consists of two phases, training and test-
ing. Training models for PR, QRS, QT and RR intervals are
created in the off-line training phase. A set of M features
(Ftot ∈ RM ), including T time domain features (Ft ∈ RT )
and F frequency domain features (Ff ∈ RF ) are extracted
from the PPG signal. Here Ftot = Ft ∪ Ff and M = T + F .
The subjects simultaneously undergo an ECG check-up for
extracting ground truth PR, QRS, QT and RR intervals. There
are numerous algorithms available in literature for ECG sig-
nal analysis. Wavelet transform based ECG parameter extrac-
tion methods were proposed in [11] [12] [13]. Several tools
(like ECGBag [14]) are also available for locating the major
points in ECG waveform. A time domain feature extraction
from noisy ECG waveform was presented in [15]. A combi-
nation of all these methods were used by us for ECG analysis.
Extracted PR, QRS and QT interval values are binned into
one of the three classes as shown in Table 1, in terms stan-
dard medical definition [16]. A feature selection technique,
influenced by the theory of MIC [17], followed by a sigmoid
gain function is used to rank the PPG features according to
their relevance with the ECG parameters for creating differ-
ent training models. During testing, ECG parameters of an
untrained subject are predicted by analyzing his/her PPG fea-
tures, using the training models.
Different modules of our proposed methodology are elabo-
rated in the following subsections.

3.1. PPG Signal Preprocessing

Spectrum of PPG signal is typically concentrated around 1
Hz. Thus, a 4th order bandpass filter (cut-off frequencies 0.25

Hz and 7 Hz), and a moving average filter are used to remove
the undesired frequencies from raw PPG signal.

3.2. PPG Feature Extraction

We start with 15 PPG features, including 11 time domain and
4 frequency domain features for analysis.

Fig. 1. (a) Sample PPG signal with 3 full cycles and its (b)
frequency components.

3.2.1. Time Domain Features
The time domain features are extracted from each cycle
of PPG signal. It can be observed in Fig. 1.(a) that a
complete PPG cycle is bounded by two successive trough
points. So all the troughs are located in the input PPG
data to identify the cycles. Our 11 time domain features
(Ft = {f1, f2, f3, .., f11}) are - (1) peak to peak interval
(Tsn+1 − Tsn ), (2) pulse interval (Tvn+1 − Tvn ), (3) pulse
height (Asn −Avn ), (4) crest time (Tsn −Tvn ), (5) delta time
(Tdn − Tsn ), (6) trough to notch time (Tdn − Tvn ), (7) falling
time (Tvn+1 − Tsn ), (8) notch to trough time (Tvn+1 − Tdn ),
(9) rising slope ((Asn−Avn)/(Tsn−Tvn )), (10) falling slope
((Avn+1−Asn)/(Tvn+1−Tsn)) and (11) area under a com-
plete cycle. Some of these features are taken from [18] and
[19] with the rest proposed by us. Effective feature extraction
requires an accurate detection of the peak (Ts, As), trough
(Tv, Av) and dicrotic notch (Td, Ad) from every cycle. Once
the peaks and troughs are detected, dictrotic notches can be
traced by searching the local maxima in the first derivative
between a peak and its immediate trough [18].

3.2.2. Frequency Domain Features
A Short Time Fourier Transform (STFT) is applied on the
windowed PPG samples to obtain the frequency domain
features. If [xn, xn+1...xn+N−1] be a discrete sequence of
length N , then the expression of N point STFT for kth bin
corresponding to fk = k.fs/N Hz (fs being sampling fre-
quency) of the windowed sequence x[n + m].w[m] is given
by

X(n, k) =

N−1∑
m=0

x[n + m]w[m]e−j(2π/N).k.m (1)

The major frequency components of a sample PPG sig-
nal is shown in Fig. 1.(b). Here the dominant peak indi-
cates the fundamental component of the signal. The other
peaks are possibly associated with different waves reflected
from periphery to aorta [19]. For optimum performance,
PPG samples are segmented into non-overlapping rectangu-
lar windows of 1024 and 256 samples for Capnobase and
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phone dataset respectively. Four frequency domain features
(Ff = {f12, f13, f14, f15}), such as 1) dominant peak loca-
tion, 2) distance between dominant and its immediate peak,
3) spectral centroid and 4) width of dominant peak region
(shaded region in Fig. 1.(b)) are extracted from each window.

3.2.3. Constructing the Complete Feature Set
Time domain features are extracted from each of the PPG cy-
cles, but frequency domain features are extracted from every
window. A complete window contains m full cycles along
with one or two partial cycles at the beginning and or at the
end. The frequency domain features extracted from that win-
dow are repeatedly assigned to the time domain features cor-
responding to all m full cycles for constructing the composite
time frequency feature space. The cycles partially in between
two successive windows are assigned with the average values
of the frequency domain features of the two. So, for each
subject Mo feature vectors are generated in R15 space, where
Mo is the number of complete cycles in the captured data.

3.3. Removal of Outlier

PPG signal is noisy in nature and may contain intermediate
false peak or trough points. Moreover sometimes actual peaks
or trough points are completely missed out due to noisy sur-
roundings. These result in the calculation of wrong features
(outlier) in the feature extraction stage.
The proposed approach creates two clusters [20] to success-
fully remove the wrong features. If ith instance of jth feature
be f ij , then for all i, we calculate

∆f ij = |f i+1
j − f ij |, 1 ≤ j ≤ 15 (2)

Since for a subject, values of jth feature in two successive
cycles or windows should not vary much, ∆f ij should be very
close to zero. A high value of ∆f ij indicates that either of f ij
or f i+1

j is wrongly calculated.
Initially, histogram analysis is done for all the ∆f ij to initial-
ize the centroids for the cluster analysis. Later a 2-Means
clustering is done followed by cluster density estimation to
remove the outliers. In the histogram analysis, for the jth fea-
ture, if bin kj holds the maximum data points from ∆fj , then
the average value of all the entries in kj represents the jth

component of the initial centroid (C1j) for one cluster. The
initial centroid of the second cluster (C2) is the farthest data
point from the C1. A standard k-Means algorithm is applied
to get the final cluster centroids. The features corresponding
to the centroid with lower Xie-Beni index [21] are considered
to be compact and consisting of good data points. These are
used for further processing.

3.4. Feature Selection

Feature selection aims to select the most relevant set of fea-
tures for training a classifier. It is often seen that, training with
a reduced but discriminative set of features can improve the
accuracy of a learning system. In this paper we propose an

effective feature selection method using the concept of MIC.
MIC is a statistical tool to measure the relationship existing
between a pair of dataset [17]. This is done by constructing
grids with various sizes to find the largest mutual information
between the data pair. A high value of MIC (∼ 1) indicates a
stronger interrelationship. For each pair of data (x, y), if I is
the mutual information for a grid G, then MIC of a set D of
pairwise data with sample size n and grid size (xy) less than
B(n) is given by (3) [22]

MIC(D) = maxxy<B(n){M(D)x,y} (3)

where B(n) is a function of sample size (usually B(n) =
n0.6). For different distributions of G, M(D) is given by

M(D)x,y =
max{I(D|G)}
logmin(x, y)

(4)

Fig. 2 shows the MIC values obtained for all the 15 PPG fea-
tures corresponding to different ECG parameter classes for
training dataset. If the MIC of nth PPG feature fn with re-

Fig. 2. MIC of 15 PPG features w.r.t. ECG parameters.

spect to an ECG parameter be wn, then we calculate a gain
factor Gn from it using a sigmoid function as in (5)

Gn =
1

1 + e−k·(wn−0.5)
(5)

The features are multiplied by their respective gain factors
before training or classification. The constant k controls the
steepness of the gain function (as in Fig. 3(a)). The func-
tion forms a horizontal line at k = 0, resulting equal gain of
0.5 for all values of MIC. This is equivalent to a no feature
selection criteria. The steepness gradually increase with k.
So, features, holding high MIC values (≥ 0.5) are boosted
with gain factor close to 1. However, features with lesser
MIC values are gradually suppressed due to their close to
zero gain. Thus an effective feature selection is possible by
optimally tuning the constant k. In systems perspective, cal-
culation of gain factors from MIC for different PPG features
is done in training phase and are used for both training and
testing. The proposed feature selection method is tested on
Iris dataset. It contains a total of 150 instances of 3 different
classes of Iris flower, defined by 4 dimensional feature space
(sepal length, sepal width, petal length and petal width). MIC
values of the 4 features with the class level are obtained as
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Fig. 3. (a) Plot of sigmoid gain function for different values
of k. (b) Effects of outlier removal on QT interval.

{0.64, 0.4, 0.92, 0.92}, indicating that third and fourth fea-
tures are more significant. The same is reported by other
standard feature selection algorithms [23] [24], justifying our
proposed MIC based approach.

3.5. Classification

Certain PPG features {f1, f2, f6, f12, f14, f15} are found to
hold good linear relationship with RR interval by producing
high Pearson coefficient (above 0.8 in magnitude) values. So,
linear regression produces satisfactory results in estimating
actual value of RR interval. However this does not hold for
PR, QRS and QT interval parameters. Hence, instead of pre-
dicting actual values, we use a multiclass Support Vector Ma-
chine (SVM) classifier, with C-SVC [25] algorithm and radial
basis kernel to predict their ranges as in Table 1.

4. EXPERIMENTAL RESULTS

Our proposed method is tested on benchmark Capnobase
dataset and the second dataset collected by us using iPhone.
Both were split into two parts in 60:40 ratio, the larger part
for training purpose and the smaller for performance analysis.
All the ranges of PR, QRS and QT intervals are ensured to
represent equally in the training dataset. Like feature extrac-
tion, classification is also done on individual cycle of PPG
signal. The average detection accuracy (in percentage) is
considered as the evaluation criteria for PR, QRS and QT
interval classes. Whereas, average percentage error from
ground truth value is reported for RR interval. The effect
of outlier removal on QT interval, using Capnobase dataset
by varying the steepness constant k is shown in Fig. 3(b). It
shows that the detection accuracy improves with outlier re-
moval for all values of k. Similar performance is achieved for
other ECG parameters as well. Thus, we report all our results
by incorporating the same. Overall performance in estimating
different ECG parameters using the two datasets, for different
values of k are shown in Fig. 4. It can be observed that for
all the ECG parameters, overall accuracy mostly improves
with k and generally is the least at k = 0 (equal gain to all
features i.e no feature selection). This clearly indicates the
positive effect of feature selection. It is also observed that,
for a particular ECG parameter, optimum performance for
both datasets is achieved around same value of k, justifying
that the feature selection method is dataset independent. The
proposed methodology inevitably produces better accuracy
on Capnobase dataset than the other. Since iPhone device

Fig. 4. Performance of ECG classifiers for different values of
k for the two datasets.

captures reflective PPG at a lesser sampling rate, it is de-
pendent on subject’s skin properties, motion artifacts and
surrounding light. Being a standard dataset, Capnobase PPG
dataset is mostly free from them. In spite of the noisy data,
we are able to achieve around 80% accuracy on our second
dataset in estimating PR, QRS and QT interval parameters.
This indicates the feasibility of the proposed method to create
phone application for household ECG monitoring. It is also
observed that, the performance of PR and QRS interval clas-
sifiers initially improves with k, but eventually degrades at a
very high value of k. One possible reason may be, at a very
high value of k, some discriminative features, but holding low
MIC values (≤ 0.5) with ground truth, get eliminated, result-
ing in lower accuracy. However, this effect is not observed
for QT and RR intervals. Holding stronger relationship with
most of the PPG features, the QT interval classifiers performs
better than PR and QRS intervals.
We found by analyzing every individual subject that, those
having prominent dicrotic notch in PPG signal, produces
better accuracy than others in detecting different ECG param-
eters. Since, many of our features are derived from dicrotic
notch points, wrong estimation of them may lead to erroneous
feature calculation and hence reduced accuracy. Currently,
we are investigating the feasibility of using the curvature of
a subject’s PPG waveform as an alternative feature to bypass
the depecdency of noise-prone dicrotic notch points.

5. CONCLUSION

The paper presents an empirical approach to estimate some
ECG parameters from PPG. The method is successfully tested
on two datasets to justify its suitability for coarse ECG es-
timation even on noisy PPG data for initial screening. The
proposed feature selection algorithm boosts up the overall de-
tection accuracy by selecting the relevant features for classifi-
cation. Currently, we are at the very first stage of PhotoECG
project. The method still needs to be tested on larger and more
diverse dataset before actual system deployment. Our future
work concentrates in proposing new PPG features relevant to
ECG and also to integrate them with other easy-to-measure
cardiovascular features to search for better accuracy.
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