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ABSTRACT

Reliable measurements of feet trajectories are needed in some appli-
cations, such as biomedical applications. This paper describes the
data processing pipeline used in GAIMS, which is a non-intrusive
system that measures feet trajectories based on multiple range laser
scanners. Our processing pipeline relies on a new tracking paradigm,
and it is based on two innovative algorithms: the first algorithm lo-
calizes the feet directly from the observed point cloud without any
clustering, and the other algorithm identifies the feet. After review-
ing the various types of noise affecting the point cloud, this paper ex-
plains the limitations of the classical processing approach and gives
an overview of our new pipeline. The effectiveness of the proposed
approach is established by discussing the results that have been ob-
tained in several studies based on GAIMS.

Index Terms— GAIMS, feet, tracking, multiple sclerosis, bio-
metric identification

1. INTRODUCTION

Interesting information about the gait of an observed person can be
derived from his feet trajectories. Measuring them can be useful in
many different high level applications such as the biometric iden-
tification [6, 37], the follow-up of patients with some neurological
diseases [1, 5, 32], etc. For the most applications, non-intrusive
measuring systems are necessary or preferable. In a non-intrusive
system, the observed person does not need to carry any form of a
tag, such as sensors, markers, special clothes, etc. In our previous
works [31, 32], we have introduced the non-intrusive system GAIMS
(GAIt Measuring System) which measures feet trajectories by com-
bining and analyzing the distance profiles measured by several range
laser scanners (RLSs) covering a common horizontal plane located
a few centimeters above the floor (see Figure 1). This system tracks
the feet both in the swing and stance phases, and can be used in large
areas. Moreover, it is nearly insensitive to ambient lighting and can
be used in total darkness.

The principle of RLSs is the following. They measure distances
between themselves and a few points of the scene that are in line of
sight. The sensor emits a light pulse (usually in the infrared band)
which is reflected by the objects in the scene and sent back to a light
detector, collocated with the pulse source. The distance to the hit
point is derived from the time needed by the signal to travel forth
and back. RLSs measure one distance at a time, but the measure
is repeated at high speed and periodically in a set of directions. As-
suming that the sensors are punctual, a polar to Cartesian coordinates
transform suffices to compute the point cloud corresponding to the
discretized distance profile that is measured.

In order to combine the information provided by several sensors,
their positions and orientations must be determined. Many calibra-
tion procedures have been proposed. Piérard et al. [34] describe a

Fig. 1. GAIMS measures feet trajectories by using several range laser
scanners covering a common horizontal plane located at the height
of the ankles. A few laser beams are depicted for three sensors.

calibration procedure that consists in placing a known object at sev-
eral places in the scene. Hashimoto et al. [17] achieve the calibration
thanks to two planes placed in the environment. Zhao et al. [41] pro-
pose to align the backgrounds manually and to run an optimization
algorithm, and Glas et al. [15] align the trajectories of the observed
persons. After calibration, the point clouds seen by all sensors can
be registered, and merged into a global point cloud. The use of sev-
eral sensors allows to reduce (self-)occlusions, cover a larger area,
and enhance the global point cloud density.

Most laser-based tracking works presented in the literature are
related to the tracking of persons (or groups of persons [24]). Only
few methods are devoted to the tracking of legs [34, 37, 39], and
these works usually aim at tracking persons by fusing leg tracks [2,
8, 9, 38]. It appears that obtaining a high precision and accuracy is
not the main requirement for those systems, to the contrary of the
applications for which GAIMS has been designed.

This paper describes the data processing pipeline used in GAIMS
and explains our design choices. This document is organized as fol-
lows. Section 2 elaborates on the various kinds of noise affecting
the global point cloud. Then, Section 3 explains why the classi-
cal pipeline to track objects is not suitable for our needs, and Sec-
tion 4 presents an overview of the data processing pipeline proposed
to overcome the limitations of the classical approaches. Finally, Sec-
tion 5 summarizes the main results that have been obtained with
GAIMS, and explains how our processing pipeline improves on pre-
vious works. A short conclusion is given in Section 6.

2. NOISE AFFECTING THE GLOBAL POINT CLOUD

The current version of GAIMS relies on 4 RLSs BEA LZR-i100
(placed in the corners of a rectangular room, as illustrated in [31]).
In the following, we analyze the main sources of noise affecting
the global point cloud, based on the characteristics of these sensors.
Furthermore, we develop some examples to highlight the order of
magnitude of these limitations.
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Limited precision of the distance measurements. The an-
nounced distance resolution is about 1mm. In practice however, we
observe a temporal variation of a few millimeters, and sometimes
even a few centimeters, on the acquired distances. The sensors are
strongly disturbed by highly reflective materials (eg metal), and
black materials (in the infrared band). At discontinuities in the
distance profile, the sensors produce a random distance measure
between the minimum and the maximum distance (this observation
is similar to the flying pixels observed by Lindner et al. [22] with
PMD cameras). Therefore, the sensors may see points where there
is no object in the scene, and robustness to outliers is mandatory.

Low angular resolution. The sensors measure distances in 274
directions spanning a Θ = 96.3281° wide angle. The number of
points seen on an object rapidly decreases when the object moves
away from the sensor. Let us consider a circular object of radius r,
whose center is located at a distance d from the sensor. The sensor
sees this object in an angle θ = 2 arcsin

(
r
d

)
, and a minimum of⌊

θ 274−1
Θ

⌋
points, where b·c denotes the “round down” operator.

Example 1. A sensor sees only 3 points on a leg (the typical size is
r = 5 cm with trousers) located at 5m from the sensor. The use of
multiple sensors helps to overcome this limitation.

Scanning duration. The acquisition rate is 15Hz, and the scan-
ning is obtained thanks to an internal mirror turning at 360 × 15 =
5400 °/s. Therefore, the infrared beam turns at Ω = 10800 °/s and
a complete distance profile is acquired in Θ

Ω
' 9ms. This is impor-

tant when the object is moving. Let us consider an object of radius
r, located at a distance d � r, and turning around the sensor with
a small angular velocity ω. It can be showed that, due to its motion,
the object is seen with an apparent radius r′ ' r

(
1 + ω

Ω

)
.

Example 2. Let us consider a person walking in a direction perpen-
dicular to the sensor’s line of sight. For a walking speed of 5 km/h,
the maximal speed of the feet is approximately 16 km/h. This gives
ω = 16000

3600
1
d

360
2π

°/s. The motion induces an error of only 2.36 %
on the perceived leg size for d = 1m. As this error is negligible, the
selected sensors are fast enough to track feet with a high accuracy.

Asynchronism. As the manufacturer did not foresee a mean to
synchronize the sensors, there may be a difference of 1

15
s between

the acquisition time of the points in the global point cloud. The
displacement of the objects during 1

15
s should be negligible in com-

parison to their size. Otherwise, the perceived shape of the objects
would be highly altered.

Example 3. For a walking speed of 5 km/h, the maximal speed
of the feet is approximately 16 km/h. Therefore, during 1

15
s, a

foot can move by 29.6 cm. As this is larger than the size of the
element, highly deformed global point clouds are expected, and ad-
vanced processing strategies are necessary.

It follows, from this analysis, that the point cloud is distorted,
even if the person does not move. When the person is walking
rapidly, the asynchronism cannot be neglected, and the perceived
point cloud is highly deformed (either compacted or elongated de-
pending on the motion direction). Other reasons for distorted clouds
include the limited field of view, the (self-)occlusions, and the flying
pixels. We need to consider all these limitations when developing
the algorithms to analyze the information provided by RLSs. In the
remainder of this paper, we show that a proper processing pipeline
design enables us to reach high precision and accuracy on the trajec-
tories measured by GAIMS.

3. WEAKNESSES OF CLASSICAL APPROACHES

A classical processing approach to track objects based on succes-
sive point clouds starts with the segmentation of the scene into its
components (the walls, the objects, the legs, etc). Afterwards, the
location of each component is defined (usually by its centroid), and
tracking coupled to data association techniques are used to estimate
the trajectory of each component. Even if this processing flow is of-
ten encountered in the literature, it is inappropriate to measure the
feet trajectories for several reasons that are summarized hereafter.

Segmentation. There are mainly two types of segmentation meth-
ods: those detecting the discontinuities in a distance profile (i.e. the
breakpoints [35]) and those clustering a point cloud. Whereas the
methods of the first type [7, 19, 38] are tailored only for a single sen-
sor, the methods of the second type take the signals measured by all
RLSs into account simultaneously. Fod et al. [13] assume that the
various elements in the scene are separated by at least 10 cm, and
Zhao et al. [41] group the points within a radius of 15 cm. Clearly,
this approach is inappropriate for our applications: it is difficult to
separate the legs at the swing phase middle since they are very close.
A similar observation has been made by Cui et al. in [9, 10, 11].
The deformation of the point cloud (explained in the previous sec-
tion) may also cause difficulties for clustering-based approaches.

Localization. After the segmentation, a location has to be esti-
mated for each blob. The centroid is considered in [38] and [41].
But, the feet motion and the sensors asynchronism cause deformed
point clouds. Moreover, the points are not sampled regularly along
the leg’s contour because a sensor sees only one side of it [38], and
also due to the (self-)occlusions in the scene. Therefore, the blob’s
centroid is a biased estimation of its real location, which implies
some bias in the resulting feet trajectories.

Tracking. Another source of imperfection originates from the
tracking, which is often done simultaneously with the noise filtering,
as with the (extended) KALMAN filter [18] (see eg [2, 11, 13, 17, 24,
38, 41]). Such a filter requires to specify a model of motion. Several
models of the human walk have been described and used in the litera-
ture in order to analyze RLS data [2, 8, 10, 12, 21, 23, 25, 37, 38, 41].
The role of such a model is to help filtering out the component of
the signal which does not correspond to the movement predicted by
the model. Obviously, it is delicate to guarantee that the part of the
gait which is specific to the observed person (that is the signal of
interest for the final applications) is preserved, since one can only
use a model representing the average gait of the healthy population.
Moreover, the existing models are very simple (they assume a con-
stant velocity, a constant acceleration in each phase of the gait cycle,
or only a few degrees of freedom). In consequence, the precision of
the tracking is affected by the deficiency in realism. For example,
Chung et al. [8] have observed, with their model, errors as large as
16 cm on the foot displacement during only 200ms.

Data association. In a point cloud, there exists no information to
help distinguishing between the left and the right feet. The data as-
sociation is thus typically performed thanks to the tracker, based on
the previous measurements. Nevertheless, in the context of people
tracking inside groups, Mucientes et al. [24] have underlined the dif-
ficulty of the data association problem, one reason being the prox-
imity of the tracked elements. In the context of feet tracking, the
data association problem is amplified. Even a single data association
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Fig. 2. The new proposed processing pipeline to measure feet trajec-
tories with GAIMS.

failure may have severe consequences (eg for medical applications
in which the movement of each foot has to be described separately)
since a crossing between the two feet trajectories may occur. More-
over, bootstrapping the tracking and data association procedure is
always delicate.

Simplifying assumptions. It should also be noted that many sim-
plifying assumptions have been used in the literature. For example,
Carballo et al. [7] and Xavier et al. [40] have assumed that the hori-
zontal cross-section of a leg has a circular shape. However, this as-
sumption does not hold in practice, for two reasons. Firstly, we have
explained that the point cloud may be highly deformed, due to the
sensors asynchronism, to the motion, and to noise. Secondly, in the
swing phase, the sensors may see an horizontal cross-section of the
foot instead of the lower part of the leg. Another kind of assumption
often encountered in the literature is a maximal walking speed. Cui
et al. have underlined the difficulties they encountered when the peo-
ple are moving fast [11]. We have already observed walking speeds
around 3.6m/s in medical applications where people are asked to
walk in the “as fast as possible” paradigm [26]. Such a walking
speed obviously violates the hypothesis encountered in most papers
(eg 1.4m/s in [8] and 1.5m/s in [36]).

For all the reasons we have summarized here, we propose an
alternative processing pipeline to the classical processing approach.
The proposed pipeline is described in the next section.

4. THE PROPOSED PROCESSING PIPELINE

Figure 2 shows the proposed processing pipeline, which is organized
in 7 steps. Some details are omitted for conciseness.

1. A background subtraction algorithm is applied on the distance
profiles measured by each sensor, in order to filter out uninter-
esting static elements in the scene, as in [9, 13, 16, 34, 37, 41].

2. A polar to Cartesian coordinates transformation is applied on
the distance profiles to convert the measures taken by each
sensor into a point cloud.

3. Thanks to the calibration procedure [34], the individual point
clouds are registered, and merged into a unique global point
cloud.

4. A coarse tracking (eg using a KALMAN filter) is used to seg-
ment the person for which the feet trajectories need to be mea-
sured. The points corresponding to the other moving elements

in the scene are filtered out. In some applications, a simple
region of interest can be used in conjunction with (or in place
of) this tracking. Or, one could also rely on human detection
algorithms such as the one presented in [3].

5. Instead of clustering the remaining points into two blobs cor-
responding to the feet (which has been explained previously
to be difficult in many cases), we localize the two feet di-
rectly from the point cloud of the person. To this end, we
have designed an algorithm based on machine learning tech-
niques. The model used for the prediction of the feet locations
based on the point cloud is learned from synthetic samples
randomly and automatically generated based on (1) the re-
sults of the calibration procedure [34], (2) a realistic walking
person simulator, and (3) a software simulating RLSs. In this
way, we avoid many sources of bias. For example, we do not
make any assumption about the shape of the person’s point
cloud. The cloud deformation due to the sensors asynchro-
nism and to the feet motion is properly handled, as well as the
limited field of view of the sensors and the self-occlusions.

6. The labels “left” and “right” are given to the feet accord-
ing to the result of an optimization taking multiple clues into
account: the feet are never moving backwards significantly,
only one foot is moving at a time, the left (right) foot turns
around the right (left) one in the (counter-)clockwise direc-
tion during the swing phase, the feet trajectories are continu-
ous, etc. Labeling errors are seldom, and only occur for very
short periods of time.

7. We interpolate between the successive feet coordinates with
the same labels. The resulting trajectories are filtered thanks
to the knowledge of the noise affecting the output of the feet
localizer (step 5, which has been previously evaluated).

Although this pipeline itself is innovative, new algorithms have been
developed to implement the fifth and sixth steps. A detailed descrip-
tion of these algorithms is outside the scope of this paper. In addi-
tion, we plan to improve these two steps for next versions of GAIMS.
Nevertheless, some experiments in the current configuration estab-
lish the relevance of our approach and the effectiveness of the new
architecture (GAIMS provide very precise and accurate measures of
the feet trajectories). This is highlighted by various achievements
that have already been obtained with GAIMS in the medical field, as
explained in the next section.

5. RESULTS

The feet trajectories measured and labeled by GAIMS can be used
to derive many significant gait descriptors. At the time of writing,
we have recorded, with GAIMS, the gait of 106 Healthy Persons
(HP) and 71 Patients with Multiple Sclerosis (PMS) with the help
of the university hospital of Liège (Belgium). Walking impairment
is a good indicator of disease activity since it is frequent and appears
early in the disease course of PMS. The volunteers were asked to
walk in three modes (preferred pace, as fast as possible, and tandem
gait) on a 25 ft (7.62m) straight path, and on {1, 5, 25} laps of
a 20m∞-shaped path. Many gait descriptors have been computed
for each test and stored in a database (whose size is expected to grow
significantly in the near future), which fed several studies. The main
findings of those studies are summarized hereafter.

Several studies conducted by Phan-Ba et al. have demonstrated
significant gait differences between HP and PMS [27, 29, 30], as
well as between different categories of PMS defined either with re-
spect to the Expanded Disability Status Scale (EDSS) [30] (this is
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an composite score quantifying the disability of eight functional sys-
tems [20]) or with respect to the deceleration index [29] (this index
is related to the motor fatigue [26]). More recently, also based on
our database, Phan-Ba et al. have established that the diversity of
gaits is mainly explained, for PMS, by two components: one is re-
lated to the walking speed and the other one to the ataxia and gait
asymmetry [28].

One of the validation strategies we used for validating GAIMS
showed that GAIMS is capable of detecting subtle within-subject gait
modifications such as those induced by the intake of a low dose of
alcohol [32, 33]. These modifications are most probably related to
ataxia. This opens new prospects concerning the follow up of PMS,
since detecting gait modifications can be used for assessing the ef-
fectiveness of the medication and physical therapy.

Azrour [4] applied machine learning techniques on our database,
and showed promising results concerning the diagnosis and follow
up of PMS, based on the gait characteristics measured by GAIMS.
He obtained an accuracy of 92 % when distinguishing the HP from
PMS. Moreover, he showed the possibility of predicting a score
highly correlated with the EDSS based on the gait descriptors.

Giet [14] showed the existence of correlations between some
gait characteristics measured with GAIMS and the quantity and qual-
ity of the physical therapy and physical activity followed by PMS.
Note that only patients with an EDSS around 4 have been selected
in his study; this corresponds to the ability to walk 500m without
aid. The significant gait characteristics include the speed, the double
support time, the deviation from the followed path (during tandem
walk), and the lateral distance between feet (an enlarged base of sup-
port improves the balance), as well as the speed decrease during a
long walk (which is an estimation of the motor fatigue [26]). The
positive correlation between the lateral inter-feet distance and the
quantity of physical therapy and physical activity was unexpected
and is still unexplained. Remarkably, correlations between some
gait characteristics provided by GAIMS and the emotional state of
the patients have also been observed by Giet [14]: the more the PMS
feel coached by their physical therapist, the more the double support
time is reduced when walking a small distance as fast as possible.

The findings of all those studies clearly show that our processing
pipeline preserves the interesting (abnormal) components of the gait,
which would be filtered out by the classical processing approach, as
explained in Section 3. Moreover, the signal to noise ratio character-
izing the gait descriptors is sufficiently high for allowing the detec-
tion of inter- and intra-subject gait modifications in medical applica-
tions. This validates the design and the processing pipeline currently
used in GAIMS.

6. CONCLUSION

GAIMS is a powerful measuring system that provides reliable feet
trajectories without requiring the observed person to wear any active
or passive marker, sensor, etc. It is based on distance measures taken
by range laser scanners, and it is therefore a non-intrusive system.
This paper describes the challenges for obtaining reliable measures
of the feet trajectories (precise, accurate, insensitive to the appear-
ance of clothes and to the lighting conditions, etc), and proposes
a new processing pipeline that is more effective than the traditional
tracking paradigm. With our new processing algorithms, GAIMS has
proven to be useful for medical applications. GAIMS could also be
used for other applications requiring precise and accurate measures
of the feet trajectories, such as the biometric identification.
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