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ABSTRACT

We introduce a mobile system that is able to detect arousal in real-
time based on electrocardiogram and electrodermal activity. The
system is using an Android smartphone and wearable sensors, which
include a smart watch and a heart rate belt that gather skin conduc-
tance and heart rate data, respectively. Algorithms for processing
the skin conductance and heart rate data, as well as an automated
method for labeling the collected ‘arousal’ and ‘non-arousal’ experi-
mental data are developed. Small-scale user tests show 84% 10-fold,
83% between-subject, and 68% new-subject arousal detection accu-
racy.

Index Terms— arousal, skin conductance, heart rate variability.

1. INTRODUCTION

For a healthy lifestyle it is important that people are aware of arous-
ing and potentially stressful situations, so they can take the necessary
actions to cope with them. In this paper, we describe a smartphone-
based system which detects arousal in real-time using Electrocardio-
gram (ECG) and Electrodermal Activity (EDA) data, which consists
of R-R peaks and skin conductance, respectively. Algorithms for
automatic labeling of the collected data, and for real-time feature
extraction from heart rate and skin conductance are presented.

The system uses the Bluetooth communication capability of the
smartphone to transfer the arousal and non-arousal classification re-
sults to the nearby connected devices. Informing selected contacts
of the user in real-time about the current arousal state of the user can
be valuable for applications targeting autistic children, elderly with
dementia and their caregivers [1].

Arousal or stress detection based on physiological signals has
been explored in a multitude of studies, using physiological param-
eters such as ECG, EDA, skin temperature (ST) and pupil diameter
in tasks such as the Stroop color-word interference and the Montreal
Imaging Stress Task (MIST). The achieved stress vs. no-stress clas-
sification performances range from 82.8% to 99.5% [2–5]. In these
studies, all analyses were done offline and the built stress detection
systems did not have any real-time capabilities.

A real-time mobile stress recognition system that uses ECG data
is presented in [6]. In this system, the stress recognition is based on
a personal stress threshold established for each subject in a lab set-
ting using a ‘protocol intended to alternately evoke sympathetic and
parasympathetic responses’. When stress is detected, the application
prompts the user to perform certain breathing exercises to alleviate
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stress. This study is mainly a ‘qualitative exploration of how people
adopt mobile therapies’, and no formal evaluation of the efficacy of
the system is available.

In the real-time mobile stress detection system presented in [7],
the stress detection is based on activity information, ECG, ST and
breathing rate. The system is implemented on a smartphone and can
discriminate between five stress levels (from no stress to very high
stress). This system is trained with fifteen subjects, and its offline
classification accuracy reaches 90.4%. The online classification ac-
curacy reaches only 39.7%. The reason for this big drop in perfor-
mance was identified as overfitting of the input data.

The systems in [6, 7] are similar to ours in terms of their
real-time functionality, but they do not consider correcting the er-
rors in the heart beat signal. In addition, for the reduction of the
interpersonal variability in the recorded bio-signals, these studies
rely on subject-specific thresholds, while in our system a subject-
independent normalization method is used instead.

2. AROUSAL DETECTION SYSTEM

The main units of the arousal detection system are a smartphone and
two sensors that measure EDA and ECG activity. As a smart phone
we used the Google Nexus 4 (1.5 GHz CPU, 2 GB RAM), running
Android v4.2 (Jelly Bean). The EDA data is obtained from a wrist-
worn Philips DTI-2 watch [8], which can stream (via Bluetooth) the
raw skin conductance data in real-time. The ECG data is obtained
using the Zephyr HxM BT heart rate measurement chest belt. The
R-R peaks of the ECG are detected automatically by the device and
only the timestamps of the peaks are transmitted (via Bluetooth).

The software of the system, running on the smartphone, con-
sists of two parts which are responsible for arousal detection and
data storing. The part responsible for the online arousal detection (i)
receives the sensory data, (ii) extracts the parameters relevant to the
arousal detection from it (as soon as one minute of data has been col-
lected), (iii) identifies the arousal of the user based on these param-
eters, (iv) notifies the user about his/her arousal state, (v) transmits
this information to the connected device(s) and (vi) discards the old-
est 30 seconds of data (this way, a sliding window with 50% overlap
is realized). The part responsible for storing the arousal data for of-
fline reviewing (i) stores all sensory data to the phone’s memory, (ii)
records and stores audio clips relevant to the arousal response, and
(iii) uploads all arousal-related data to a personal account in Drop-
box. A flowchart showing the functionality of the arousal detection
system is shown in Fig. 1.

The system uses the smartphone’s microphone to store audio
data relevant to the arousing stimuli or event. Audio clips are

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4427



Receive incoming data 
from the sensors 
and store it on the
internal memory

One minute of 
data has been  

received
Begin

Notify the user Store the relevant  
audio clip

User 
aroused?

Feed the calculated  
parameters to the classifier to 

determine if the individual is aroused

Process EDA data and  
extract parameters 

for arousal detection

Process ECG data and 
extract parameters 

for arousal detection

yes

yes

no

Discard the oldest 30 
seconds of data

Is the smartphone 
connected to any nearby 

device(s)?

Send the arousal 
information to the 

connected device(s) yes

no

Has the user 
pressed the "Upload" 

button?

yesUpload all arousal-related 
audio clips and 

bio-measurements to 
Dropbox

no

no

Fig. 1. Flowchart representing the main functionalities of the arousal detection system.

recorded continuously and are stored in memory using a ‘circular
buffer’ approach (i.e. older audio data is overwritten by newer data),
and whenever arousal is detected, the corresponding audio clip is
marked as ‘relevant’ and is stored along with its timestamp.

2.1. Skin conductance and heart rate feature extraction and
normalization

The first step for processing of the raw skin conductance (SC) signal
includes a five-point moving average filtering. The developed peak-
detection algorithm, which works in two phases, is then applied to
the smoothed signal. First, it detects all local minima (onsets) using
the first derivative test. Using this test, a local minimum is identified
when the first derivative of the SC signal switches from negative to
positive. Second, it searches for the corresponding peak of every on-
set identified in the first phase. For this, starting from every onset,
the algorithm uses the first derivative test to find the closest following
local maximum. Using this test, a local maximum is identified when
the first derivative of the SC signal switches from positive to nega-
tive. The maximum duration of a typical skin conductance response
(SCR) is ten seconds [9], so the algorithm searches for a correspond-
ing peak only in a ten-second interval following an onset. Using this
algorithm, the peak detection accuracy is approximately 90%, com-
pared to visual inspection.

The features calculated from each one-minute SC frame are the
mean skin conductance level (SCL), the standard deviation of the SC
signal (STD), the slope of the least squares regression line fitted to
the raw SC signal (Slope), the mean amplitude of all peaks in the
frame (Mean Amplitude) and the mean rise time of all peaks in the
frame (Mean Rise Time).

The Heart Rate Variability (HRV) calculations involve an auto-
matic Inter-Beat Interval (IBI) signal correction before the feature
extraction, since beat mis-detection on an ECG has a big impact on
the HRV analysis [10]. We implemented a version of the algorithm
described in [11], which not only detects errors in the IBI signal, but
also applies the appropriate corrections. An error in an IBI value is
detected via an adaptive threshold calculated from the five preceding
IBI values. Whenever an error is detected on an IBI value, the al-
gorithm corrects it using a set of rules, which emulate how a human
expert would manually correct the IBI data, e.g. splitting the erro-
neous IBI value in two, in cases of a missed heartbeat, and adding
two erroneous IBIs together, in cases of a falsely identified heartbeat.

The Power Spectral Density (PSD) of the corrected IBI signal
(re-sampled at 4 Hz using linear interpolation) is computed using
the Welch method. The HRV features are then calculated from the
PSD signal. These features are the power in Low Frequency (LF,
0.04-0.15 Hz), the power in High Frequency (HF, 0.15-0.4 Hz),
the normalized LF (LFnorm) power, the normalized HF (HFnorm)
power and LF/HF ratio. LFnorm and HFnorm are calculated as
LF/(LF+HF) and HF/(LF+HF), respectively, as proposed in [12].
The HRV time-domain features include the mean IBI, SDNN (stan-
dard deviation of the N-N intervals), RMSSD (square root of the
mean squared differences of successive N-N intervals), and pNN50
(ratio of the number of pairs of successive N-N intervals that differ
by more than 50 ms divided by total number of N-N intervals).

Both heart rate and skin conductance exhibit large interpersonal
variations. In related studies, the method to minimize these varia-
tions includes normalization of the features calculated during stress
using the corresponding features during baseline for each subject, or
the scaling of the signal amplitudes from each participant between
zero and one. However, these methods are not applicable to an
online stress detection system, such as ours, which has to deal with
unseen physiological data. For the minimization of the interper-
sonal variations in our system, the normalization method is subject-
independent and is performed as follows: CoV(SC)= (STD)

(MeanSCL)
,

MeanAmplNorm= (MeanAmplitude)
(MeanSCL)

, CoV(NN)= (SDNN)
(MeanIBI)

,

RMSSDNorm= (RMSSD)
(MeanIBI)

. The remaining features, Number of
Peaks, Slope, Mean Rise Time (sec.), pNN50, HFnorm, LFnorm
and LF/HF are used as they are without any further normalization.

3. DATA COLLECTION

The training data is collected using the MIST procedure [13], which
is commonly employed for inducing stress/arousal. The data collec-
tion experiment consisted of three conditions: baseline, control and
arousal, which were completed in a random order with one minute
pause between them.

During the baseline condition, the participants were asked to re-
main sitting still and silent in an upright position for approximately
three minutes. During the control condition, the participants were
asked to read aloud a text passage (a children’s story) written on pa-
per for approximately five minutes. For the arousal condition, the
mathematical subtraction test described in [14] was used. This test
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Classification Algorithm
SVM J48 RF

10-fold CV 65% 67% 70%
LOSO CV 56% 58% 61%

Table 1. Initial classification results obtained using the dataset col-
lected from the twelve subjects.

required participants to continuously subtract 13 starting from 1079
at their maximum speed while uttering the subtraction procedure (i.e.
1079 minus 13 is 1066, 1066 minus 13 is 1053, and so on). If they
made an error, the experimenter notified them to correct themselves
and then continue with the subtraction. The duration of the arousal
condition was approximately five minutes (or less for participants
that reached zero in a shorter time). After the final condition, partic-
ipants were asked how they felt, but no formal (i.e. questionnaire-
based) evaluation of their affective state was performed.

Sixteen (twelve males) healthy volunteers, between 23 and 39
years of age (mean age 29.6 ± 6.3), participated in this first round
of experiments. All participants had an engineering background and
were comfortable with mathematics. The tests were carried out in a
laboratory environment, using the equipment described in Section 2.
The participants were in comfortable sitting positions during the ex-
periment and the experimenter was always present in the test room.
The experimenter only interfered during the arousal session if partic-
ipants made subtraction errors but not during the other two sessions.

For four of the participants, the skin conductance data was not
recorded due to technical reasons, so all their data was excluded from
the analysis. For the remaining twelve subjects (ten male), the col-
lected dataset size was 299 frames, where each frame is one minute
long and overlaps 50% with the preceding frame. Given the varying
duration of the experiment for each subject, ‘arousal’ (i.e. data from
the arousal session) and ‘non-arousal’ (i.e. data from the baseline
and control conditions) datasets were not of equal size. In particular,
59.8% of the collected data was from the non-arousal sessions.

4. CLASSIFICATION RESULTS

The most widely used algorithms for similar arousal/stress detection
tasks include the Support Vector Machines (SVM) and the J48 De-
cision Tree. These single-classifier algorithms were used, as well as
one classifier ensemble, the Random Forest (RF), which offers good
prediction performance. All classifiers are implemented using the
WEKA software [15] and the classification accuracy is measured in
terms of the 10-fold and the Leave-One-Subject-Out (LOSO) Cross
Validation (CV). Table 1 summarizes the arousal vs. non-arousal
classification accuracy obtained using the data collected from the
twelve subjects. The observed initial classification accuracy is low
compared to the related studies. This is mainly due to confusion be-
tween the control and arousal conditions, as can be seen from the
10-fold CV results reported in Table 2.

4.1. Automatic data labeling

To deal with the fact that control and arousal conditions were some-
what similar in terms of their arousing effects in the collected data,
only selected data from these sessions are used. To determine which
segments of data (i.e. frames of one min. length, with an overlap of

Classification Algorithm
SVM J48 RF

Baseline vs Control 79% 77% 78%
Baseline vs Arousal 83% 76% 81%
Control vs Arousal 68% 58% 69%

Table 2. Baseline vs Control, Baseline vs Arousal and Control vs
Arousal models evaluation results.

Classification Algorithm
SVM J48 RF

10-fold CV 80% 73% 72%
LOSO CV 67% 56% 56%

Table 3. Classification results using the re-labeled input dataset con-
taining data from all twelve subjects.

50%) can be used for training the classification algorithm, we devel-
oped a threshold-based automatic data labeling method.

The method developed for labeling the frames is based on the
LF/HF ratio. This feature is selected because of its reliability for
stress detection: it significantly increases when individuals experi-
ence stress [16]. The first step of this method is to calculate the
median value of the LF/HF ratio in each subject’s data for all ex-
perimental conditions combined, to get a subject-specific threshold
value. The second step involves the comparison of the LF/HF ratio
in every frame with the calculated threshold. Based on this compari-
son, frames recorded during the baseline and control conditions with
an LF/HF ratio larger than the threshold are discarded. Similarly, the
frames recorded during the arousing condition are discarded if their
LF/HF ratio is lower than the calculated threshold.

After applying the described labeling method, the input dataset
length decreased from 299 to 170 frames, of which 58.2% cor-
responds to ‘non-arousal’ frames. Since the thresholding method
was based on the LF/HF ratio, this feature was excluded from the
feature vector, along with all other features correlated (defined as
absolute correlation equal to or larger than 0.4) with it. The Pearson
correlation coefficient (PCC) was used to calculate the correlations,
and the PCC value between the LF/HF ratio and HFnorm, LFnorm,
Number of Peaks, CoV(NN), pNN50, Mean Rise Time, RMSSD-
Norm, Slope, MeanAmplNorm, CoV(SC) was found to be -0.70,
+0.70, +0.32, +0.31, -0.27, +0.23, -0.17, +0.05, -0.04 and +0.03,
respectively. Since LF/HF ratio was correlated (abs(PCC)>0.4)
with the LFnorm and HFnorm, they were excluded from the fea-
tures vector. With these exclusions, the remaining features are three
ECG (CoV(NN), pNN50, RMSSDNorm) and five EDA (Number
of Peaks, Mean Rise Time, Slope, MeanAmplNorm, CoV(SC))
features.

The classification results obtained using the reduced feature vec-
tor are shown in Table 3. The classification accuracy increased com-
pared to the initial results (Table 1), but the LOSO accuracy is still
low, because for three of the subjects the arousal detection accuracy
was below the chance level (44%, 44%, 41%). To make the arousal
classifier more specific and stable, the data from these subjects was
discarded. Table 4 summarizes the classification results obtained us-
ing the dataset from the nine remaining subjects (seven males).

Based on the final tests, the classification algorithm imple-
mented on the developed arousal detection system is the SVM,
trained with the three ECG (CoV(NN), pNN50, RMSSDNorm) and
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Classification Algorithm
SVM J48 RF

10-fold CV 84% 76% 80%
LOSO CV 83% 63% 70%

Table 4. Classification results using the re-labeled input dataset con-
taining data from nine subjects.

five EDA (Number of Peaks, Mean Rise Time, Slope, MeanAm-
plNorm, CoV(SC)) features from nine subjects.

Furthermore, the classification accuracy that can be achieved us-
ing only one of the two bio-signals was explored. The 10-fold clas-
sification accuracy obtained with the SVM algorithm using only the
ECG features was 68%, while the accuracy using only the EDA fea-
tures was 80%.

4.2. Verification tests

Four new subjects (all male) that did not participate in the previous
tests and were naı̈ve to the system and the experiment participated
in the verification tests. These subjects were similar to the first set
of subjects, in the sense that both groups consisted of participants in
age range from 25 to 40 years, had an engineering background and
were comfortable with mathematics.

The verification experiments were performed using the system
trained using the data and features collected from nine subjects, as
described earlier. The test procedure was similar to the first tests,
with the differences that for the baseline session subjects were asked
to examine four objects (a pen, the two sensors, and the smartphone)
while they were seated, silent and still, and that after each session
they were asked to complete two questionnaires, the GVA (visual
analogue scale for Global Vigor (GV) and Global Affect (GA) [17])
and the SACL (Stress Arousal Checklist) [18]. Note that the subjects
were able to see their responses from the previous sessions.

In the GVA questionnaire, participants are asked to rate emotions
on a continuous scale. Ten emotional labels are included: alert, sad,
tense, effort to do something, happy, weary, calm, and sleepy. In the
SACL test, participants are asked to rate 20 emotions on a five-point
scale (from strongly agree to strongly disagree). Ten emotions re-
lated to stress and ten emotions related to arousal are included. These
emotions are: calm, contented, active, vigorous, comfortable, lively,
uneasy, tired, sleepy, worried, distressed, uptight, drowsy, tense, re-
laxed, passive, energetic, alert, bothered, and aroused.

The arousal vs. non-arousal classification results given by the
system (arousal alert percentage) and the subjective GV, GA, stress
and arousal values, derived from the questionnaire data, are shown in
Fig. 2. The arousal alert percentage was calculated by counting the
number of frames detected as arousing in each session. The results
show that the arousal alert percentage that the system detects cor-
relates well with the subjectively evaluated arousal by the users. In
addition, we see that the stress increases and global affect decreases
during subtraction, indicating that the valence of the subtraction ses-
sion is negative. Note that there is a high between-subject variability
as can be observed from the high standard errors. This is mainly
due to the low number of subjects but also due to the type of the
conducted experiments. It is expected that for a task that is more
arousing and stressful than the subtraction this variability will be
less.

¿´»®¬ °»®½ò ÙÊ Ùß ¬®» ¿®±«¿´
ð

ïð

îð

íð

ìð

ëð

êð

éð

èð

çð

ïðð
¾¿»´·²»

®»¿¼·²¹

«¾¬®¿½¬·±²

Fig. 2. Results obtained from the verification tests. Bars and error
bars represent mean values and standard errors, respectively.

5. DISCUSSION

The main limitation of the current study is the lack of reference
arousal information. All data collected during subtraction session
was assumed to be arousing, and the rest (i.e. data from the base-
line and control sessions) non-arousing. Clearly, this is a rough as-
sumption, as the affective state of participants can be different than
expected and can vary during each session. The method used to in-
duce stress was based on a commonly employed method of perform-
ing challenging mental arithmetic tasks [14], but this method may
have been less effective on our participants since they had engineer-
ing background. Informal interviews conducted after the experiment
indeed showed that the subtraction task was rated from very chal-
lenging to less challenging. In order to account for this variation, a
subject-specific threshold calculated from physiological data, as ex-
plained in Section 4.1, was used to select more representative arousal
and non-arousal data; also, data from three subjects classified below
chance level were discarded. Verification tests (Fig. 2) showed that
the system produced an arousal alert for baseline, control, and arous-
ing conditions in 14%, 28% and 68% of the frames, respectively.

Clearly there is room for significant improvement. As a first step,
more data representative of arousal and non-arousal should be col-
lected. Ideally, these should be substantiated by quantitative (elec-
troencephalography (EEG), speech or face-based emotion analysis)
or subjective (questionnaires, external observers) means. Second,
there is need to test the system with more people.

The proposed system has novel features such as informing se-
lected contacts about the current affective state of the user, storing of
the corrected physiological data, and storing of an audio clip relevant
to the arousal stimuli or event for an offline review. Exploring how
these functionalities can be useful is a work in progress. We believe
they can be beneficial for assisting autistic children and demented
elderly, and their caregivers.

6. CONCLUSION

A mobile system that identifies arousal, and potentially stress, in
real-time based on physiological data was built and tested. Algo-
rithms for processing skin conductance and heart rate data, as well
as an automated method for labeling ‘arousal’ and ‘non-arousal’ data
were developed. The presented system can be used in applications
related to stress coping and lifestyle improvement.
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