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ABSTRACT 

 

Emotions affect many aspects of our daily lives including 

decision making, reasoning and physical wellbeing. 

Researchers have therefore addressed the detection of 

emotion from individuals’ heart rate, skin conductance, pupil 

dilation, tone of voice, facial expression and 

electroencephalogram (EEG). This paper presents an 

algorithm for classifying positive and negative emotions from 

EEG. Unlike other algorithms that extract fuzzy rules from 

the data, the fuzzy rules used in this paper are obtained from 

emotion classification research reported in the literature and 

the classification output indicates both the type of emotion 

and its strength. The results show that the algorithm is more 

than 90 times faster than the widely used LIBSVM and the 

obtained average accuracy of 63.52 % is higher than 

previously reported using the same EEG dataset. This makes 

this algorithm attractive for real time emotion classification. 

In addition, the paper introduces a new oscillation feature 

computed from local minima and local maxima of the signal. 

 

Index Terms— Emotions, Fuzzy Logic, Classification 

 

1. INTRODUCTION 

 

Emotions play an important role in our daily lives  

influencing decisions [1], reasoning and  attention [2]. 

Emotions have been associated with the wellbeing of people 

[3] and their quality of life  [4]. Researchers have also 

indicated that emotions are associated with the body immune 

system. Experimental results show that people who typically 

report experiencing negative emotions are at greater risk of 

disease than  those who typically report positive emotions [5]. 

Furthermore, people with a more negative affective style 

(negative emotional state)  have a weaker immune response 

than those with a more positive affective style (positive 

emotional state) [6]. A recent publication has also indicated 

that people who frequently experience positive emotions live 

longer and healthier lives [7].  All these findings have enticed 

researchers to better understand human emotions and make 

good for use in areas such as human-computer interaction and 

affective computing.  

Researchers have detected emotions from individuals’ 

heart rate, skin conductance, pupil dilation, tone of voice, 

facial expression and EEG using various techniques. Most of 

these techniques emerge from the machine learning and 

pattern recognition fields. Classification algorithms such as 

k-nearest neighbors (kNN) [8], Naïve Bayes [8],  neural 

network [9], support vector machines (SVM) [10] and others 

[11], [12] have been used in detection of emotions. Fuzzy 

logic based methods, which are widely used in the area of 

control, have also been used in emotion detection [13]–[15]. 

Fuzzy based emotion classifications from EEG have also 

been proposed due to its advantage of assigning patterns into 

more than one class with certain degree of membership. In 

[16] the authors proposed EEG-based emotion classification 

using fuzzy clustering algorithms (Fuzzy K-Means and Fuzzy 

C- Means), and [17] presented a method of extracting 

emotion from the EEG using incremental neural fuzzy 

inference system. 
In this paper, a new fuzzy based classification algorithm 

of positive and negative emotion from EEG is presented. In 

previous contributions both the fuzzy rules and fuzzy 

membership functions were generated from the data. In this 

work, however, fuzzy rules are defined based on research 

showing that there is a correlation of negative and positive 

emotions with activation of the right and left hemispheres of 

the human head. The algorithm has three main advantages: 

(1) direct use of intuitive rules that can be obtained from the 

literature or from expertise and additionally, new rules can be 

added as required, (2) the classification output gives two 

types of information: type of emotion and the strength of that 

emotion, and (3) it has low computation times and hence is 

suitable for portable devices and for real time applications. 

This paper is organized as follows. Section 2 presents the 

methodology providing the background on Fisher’s 

discriminant analysis (FDA) and fuzzy logic systems 

followed by the implementation of the algorithm. Section 3 

presents the testing and evaluation methods of the proposed 

algorithm and finally Section 4 presents the results and 

conclusions. 
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2. METHODOLOGY 

 

2.1. Semi-supervised Fisher’s discriminant analysis 

 

FDA [18]  is a common and robust method for reducing  high 

dimension data into a lower dimension subspace using a 

projection matrix, W. As it was pointed out by Fukunaga 

[12], there are equivalent variants of FDA to find the 

projection matrix that maximises the feature separation 

criteria. In this paper, the following FDA method was used 

[12]: 

where: 

 𝑆𝐵 =  ∑ 𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)┬𝐶
𝑖=1   (2) 

 

is the between-class scatter matrix, and 

 𝑆𝑇 =  ∑ (𝑥𝑗 − 𝜇)(𝑥𝑗 − 𝜇)
┬𝑁

𝑗=1   (3) 

is the total scatter matrix, C is the total number of classes, 𝑛𝑖 

is the sample number of the class i, 𝜇𝑖 is the mean of the class 

i, μ is the global mean, N is the total number of training 

samples in matrix X with elements 𝑥𝑗, ∀𝑗 = 1, 2, . . 𝑁 and the 

symbol ┬ is the transpose.  

The new algorithm in this paper uses FDA to reduce the 

high dimension feature space into low dimension space. As 

FDA is a supervised dimension reduction method, W was 

computed using labeled training samples. Then W is updated 

continuously to take into account changes that might occur 

over time in the stream of unlabeled samples. In order to 

update SB (see eqn. 2) using unlabeled samples,  𝜇𝑖 was kept 

constant, as proposed in [19]. ST, on the other hand, was 

updated every time a new sample, 𝑥(𝑡) was acquired. So eqn 

3 was modified to 

 

𝑆(𝑡)
𝑇 =  

(𝑡−1)

𝑡
(𝑆(𝑡−1)

𝑇 +
(𝑥(𝑡)−𝜇(𝑡−1))(𝑥(𝑡)−𝜇(𝑡−1))

┬

𝑡
)  (4) 

 

where μ(t-1) is the past global mean computed recursively, t 

= N+1, N+1, N+2, …, N being total number of training 

samples. The derivation of eqn 4 cannot be shown here due 

to limited space, but it is inspired from [20].  The reduced 

dimension feature, z(t),  was calculated using eqn 5 and then 

normalized to 𝑧(𝑡)̃ , using eqn 6.  

 

 𝑧(𝑡) =  𝑥(𝑡)𝑊┬  (5) 

 𝑧(𝑡)̃ =  exp (𝑧(𝑡)) × {∑ exp (𝑧(𝑡))}−1  (6) 

 

2.2. Fuzzy rule based classification 

 

In standard pattern recognition, classes are mutually 

exclusive [21], that is, a sample or pattern is assumed to 

belong to only one of the classes. However, in fuzzy 

classification, a pattern can belong to several classes with a 

certain degree of membership. In this paper, the fuzzy 

classifier of the following form will be used [22]: 

 

 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1 𝐴𝑁𝐷 … 𝑥𝑚  𝑖𝑠 𝐴𝑛    𝑇𝐻𝐸𝑁 𝐶 𝑖𝑠 𝑌 (7) 

 

where x1, .. xm are features, A1,.. An and Y are linguistic 

variables (e.g. small, medium, and large), C is the class. The 

number of IF-THEN rules depends on the number of 

linguistic variables and the number of features. For example, 

if there are m linguistic variables for each feature and n 

number of features, then there are  𝑚𝑛 possible number of 

rules.  

There two reasons fuzzy logic classification was chosen: 

(1) it has intuitive linguistic rules which are easy to 

understand and be obtained from experts and in the literature, 

(2) emotions are subjective and continuously varying and this 

variation can be well reflected using the degree of 

membership property of fuzzy classification. 

 

2.3 Proposed fuzzy logic based emotion classification 

 

This algorithm was developed based on a valence-arousal 

emotion classification model which is widely used in the 

literature. Based on this model, it has been reported that the 

right hemisphere of the brain is more active during negative 

emotions (low valence) and the left hemisphere is more active 

during positive emotions (high valence) [23]–[25]. This has 

been supported by experimental results in the literature. 

Trainor et al [26] reported that both joy and happiness 

emotions showed relatively greater left frontal alpha 

activation whereas both fear and sadness showed greater 

right alpha activation. In other words, the alpha wave of the 

left hemisphere decreases with positive emotions and that of 

the right hemisphere decreases with negative emotions. In 

[27] the authors reported that there existed a left and right 

difference in the relative power of the alpha wave for left and 

right hemispheres and the alpha wave decreased only at the 

right side in the happy state. Also, in [28]  alpha power was 

greater in the left than in the right frontal region during 

experience of negative emotions. These findings and others 

reported in the literature can be used to devise rules which 

can be used as a fuzzy classifier to classify emotions from the 

EEG signal. The highlighted text above are good indicators 

of the linguistic variables of the fuzzy system. Therefore, the 

table of rules (see Table 1) was developed using two input 

features (one from the left hemisphere (LEFT), the other from 

the right hemisphere (RIGHT) and one output (VALENCE). 

Three linguistic variables: low, medium, and high were used 

for the input features and five linguistic variables: very low, 

VL, low, L, medium, M, high, H, and very high, VH, were 

used for the valence. The membership functions 

corresponding to these linguistic variables are shown in 

Figure 1 and 2 for input features and valence respectively. 

 
𝑊 =  argmax

𝑊

{(|𝑊┬𝑆𝐵𝑊|)(|𝑊┬𝑆𝑇𝑊|)−1} (1) 

4423



Table 1: IF-THEN fuzzy rules used for emotion classification 

Figure 1. Input membership functions 

Figure 2. Output membership functions 

 

To put this in context, if it is assumed that the signal power 

from the EEG alpha band is taken from FP1 (electrode at 

frontal left hemisphere) and FP2 (at frontal right hemisphere) 

channels, then based on equation 7, example of rules from 

Table 1 could be linguistically interpreted as:  

Rule 1: If left alpha power is low and right alpha power 

is high, then valence is very low. 

 

Rule 2: If left alpha power is medium and right alpha 

power is high, then valence is low. 

 

The fuzzy logic based emotion classification algorithm, 

FLEC, was implemented using FDA for feature dimension 

reduction and Fuzzy logic using the rules shown in Table 1 

for classification and was implemented using Mamdani-type 

inference system [29]. The FLEC algorithm can be 

summarized as follows: 

 

Step 1: Compute global mean, μ, of labelled feature matrix X 

Step 2: Calculate SB and ST using eqns 2, and 3 respectively. 

Step 3: Calculate the projection matrix, W using eqn 1. 

Step 4: For every unlabeled feature vector, x(t) 

1. Compute SB using eqn 2, (using fixed μi and  

global mean)  

2. Update ST(t) using eqn 4. 

3. Update the projection matrix, W 

4. Reduce the dimension of x(t) using eqn 5 

5. Normalize z(t) using eqn 6 

6. Classify 𝑧(𝑡)̃ using fuzzy rules of Table 1 

7. Update the global mean 

Step 5: If there are more features, repeat Step 4. 

 

3. EXPERIMENT 

 

3.1. Signal acquisition and feature extraction 

 

The algorithm was tested using real EEG data which was 

obtained from a dataset for the analysis of human affective 

states managed by Queen Mary University of London [30]. 

The data was acquired from 32 participants while watching 

music video clips to induce different emotions. Each 

participant in the experiment watched 40 one minute long 

music video clips while his or her physiological signals being 

recorded using a 32 channel EEG. Then, participants rated 

each video in terms of arousal, valence, like/dislike, 

dominance and familiarity. More details and the EEG dataset 

can be obtained from  [8] and [30]. 

In this experiment 14 asymmetrical channel pairs, named 

according to the 10-20 International standard of electrode 

placements [31], { (FP1,FP2), (AF3,AF4), (F3,F4), (F7,F8), 

(FC3,FC4), (FC1,FC2), (C3,C4), (T7,T8), (CP5,CP6), 

(CP1,CP2) , (P3,P4), (P7,P8), (PO3,PO4), (O1,O2)} were 

used. From each channel, the alpha band (8 Hz to 12 Hz) was 

filtered using a finite impulse response filter with 127 filter 

coefficients. Then the following statistical features were 

extracted from the obtained alpha band: mean, standard 

deviation, mean of the absolute values of the first differences, 

mean of the absolute values of the second differences. 

Formulae for computing these features can be found in [32]. 

In addition, the signal power of the alpha band was also 

computed as a feature.  

In this paper, we also propose a new feature that will be 

referred as the oscillation feature.  This was obtained by 

finding all local maxima and local minima of the signal and 

this gives an insight of how signal power is related to 

oscillations and activation and inactivation of certain areas of 

the brain. Therefore, the correlation of the signal power and 

oscillation features is an indication that both features 

originate from the same emotion activity. This feature is 

obtained using an algorithm shown below: 

Get the signal x(t),  with t = 1,2,…N samples 

Set local minima, Lmin = 0 

Set local maxima, Lmax = 0 

FOR t = 1 to N-2 

  RIGH 

  LOW MEDIUM HIGH 

L
E

F
T

 

LOW M L VL 

MEDIUM H M L 

HIGH VH H M 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

Inputs[Features]

HIGHMEDIUMLOW

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

Output[Valence]

LOW

VERY

HIGH
VERY

LOW MEDIUM HIGH

4424



IF x(t) > x(t+1) AND x(t+2) > x(t+1) 

THEN Lmin = Lmin +1 

IF x(t) <x(t+1) AND x(t+2) < x(t+1) 

THEN Lmax = Lmax +1 

END FOR 

Then, the oscillation feature, O, was calculated as in eqn. 8 

 𝑂 = 𝑁/(𝐿𝑚𝑖𝑛 + 𝐿max) (8) 

3.2. Feature selection and classification 

 

For each video trial there were six features per channel and 

so a total of twelve features per channel pair. To reduce the 

classification computation cost without compromising the 

accuracy, we reduced the number of features from twelve to 

four. This was done by computing the FDA ratio for all 

possible combinations of features (12C4 = 495) and those with 

the highest discrimination ratio were chosen. It was observed 

that feature combinations which contained the signal power 

and oscillation features had higher discrimination ratios than 

other features. Thus the power and oscillation features of the 

alpha band from each channel were used for classification. 

To test the performance of the proposed algorithm, 

subject independent classification was performed on all video 

trials using our classification algorithm, FLEC, and its 

performance was compared using standard classifiers such as 

Naïve Bayes, Matlab inbuilt support vector machine (SVM), 

and LIBSVM [34] which are widely used for emotion 

classifications [10]. For every channel pair, classification was 

performed for all subjects and a 10-fold cross validation was 

used to determine and compare the performance of each of 

the four classification methods. 

 

4. RESULTS AND CONCLUSION 

 

4.1. Results and discussion 

 

Table 2 shows the 10-fold cross validation results obtained 

by classifying positive and negative emotions using features 

extracted from channel pairs as discussed in section 3.2. The 

classification output from FLEC is continuous, ranging from 

0 to 1 for negative and positive valence respectively and the 

actual value indicates the corresponding emotion strength. To 

compare FLEC with other classification algorithms, the 

continuous values were converted into crisp values, that is, 

any value less or equal to 0.49 was taken as negative valence 

(class 1) otherwise, it was taken as positive valence (class 2). 

Table 2 also shows classification results from BAYES, SVM 

and LIBSVM classifiers. From these results it can be 

observed that LIBSVM has highest average accuracy of 

63.13% followed by FLEC, BAYES and SVM with average 

classification accuracy of 62.62%, 59.64% and 50.62% 

respectively. While classifying the data, the computation time 

was measured on a standard PC running window 7 64 bits 

with Intel i7 3.4 GHz processor. On average, FLEC was 92 

times faster than LIBSVM as shown in Table 3. 

 

Table 2: Accuracy averaged over 10 - fold cross validation  

 

Table 3: Average computation time 

 

4.2. Conclusion 

 

 A continuous negative and positive emotion classifier is 

presented in this paper. The classifier has comparable 

classification accuracy with a robust LIBSVM library. An 

average of 62.62% of negative and positive classification 

accuracy is obtained using FLEC which is higher than the 

57.60% previously reported in [8] using the same dataset. In 

addition, the proposed classifier has less computation time, a 

feature desirable for real time or near real time classification 

tasks. Finally, the paper has also proposed a new oscillation 

feature, which was found to have higher FDA ratio than other 

statistical features. Further investigation of the FLEC 

classifier and oscillation algorithm will be performed for real 

time emotion classification on wearable EEG sensor nodes in 

the future. 

 ALGORITHM 

CHANNEL PAIR FLEC BAYES SVM LIBSVM 

FP1-FP2 63.05 62.66 51.25 63.10 

AF3-AF4 63.52 62.97 55.00 63.13 

F3-F4 63.20 61.72 49.38 63.12 

F7-F8 62.59 59.53 55.70 63.13 

FC3-FC4 62.50 61.95 53.05 63.12 

FC1-FC2 62.97 60.23 52.81 63.12 

C3-C4 61.80 61.56 47.19 63.13 

T7-T8 62.19 60.86 52.58 63.12 

CP5-CP6 61.02 45.23 44.53 63.13 

CP1-CP2 63.44 60.55 55.55 63.13 

P3-P4 62.89 61.88 48.75 63.12 

P7-P8 62.27 55.86 49.53 63.12 

PO3-PO4 62.50 60.31 42.73 63.13 

O1-O2 62.81 59.61 50.63 63.12 

MEAN 62.62    59.64 50.62  63.13 

 FLEC BAYES SVM LIBSVM 

Time [ms] 1.94   17.11  427.58   178.84 

Speed [Relative 

to FLEC] 

1   9  220 92 
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